195 lines
5.1 KiB
JavaScript
195 lines
5.1 KiB
JavaScript
|
/**
|
||
|
* @license Apache-2.0
|
||
|
*
|
||
|
* Copyright (c) 2018 The Stdlib Authors.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
'use strict';
|
||
|
|
||
|
// MODULES //
|
||
|
|
||
|
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
|
||
|
var isnan = require( '@stdlib/math/base/assert/is-nan' );
|
||
|
|
||
|
|
||
|
// MAIN //
|
||
|
|
||
|
/**
|
||
|
* Returns an accumulator function which incrementally computes an unbiased sample covariance.
|
||
|
*
|
||
|
* ## Method
|
||
|
*
|
||
|
* - We begin by defining the co-moment \\(C_n\\)
|
||
|
*
|
||
|
* ```tex
|
||
|
* C_n = \sum_{i=1}^{N} ( x_i - \bar{x}_n ) ( y_i - \bar{y}_n )
|
||
|
* ```
|
||
|
*
|
||
|
* where \\(\bar{x}_n\\) and \\(\bar{y}_n\\) are the sample means for \\(x\\) and \\(y\\), respectively.
|
||
|
*
|
||
|
* - Based on Welford's method, we know the update formulas for the sample means are given by
|
||
|
*
|
||
|
* ```tex
|
||
|
* \bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}
|
||
|
* ```
|
||
|
*
|
||
|
* and
|
||
|
*
|
||
|
* ```tex
|
||
|
* \bar{y}_n = \bar{y}_{n-1} + \frac{y_n - \bar{y}_{n-1}}{n}
|
||
|
* ```
|
||
|
*
|
||
|
* - Substituting into the equation for \\(C_n\\) and rearranging terms
|
||
|
*
|
||
|
* ```tex
|
||
|
* C_n = C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})
|
||
|
* ```
|
||
|
*
|
||
|
* where the apparent asymmetry arises from
|
||
|
*
|
||
|
* ```tex
|
||
|
* x_n - \bar{x}_n = \frac{n-1}{n} (x_n - \bar{x}_{n-1})
|
||
|
* ```
|
||
|
*
|
||
|
* and, hence, the update term can be equivalently expressed
|
||
|
*
|
||
|
* ```tex
|
||
|
* \frac{n-1}{n} (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_{n-1})
|
||
|
* ```
|
||
|
*
|
||
|
* - The covariance can be defined
|
||
|
*
|
||
|
* ```tex
|
||
|
* \begin{align*}
|
||
|
* \operatorname{cov}_n(x,y) &= \frac{C_n}{n} \\
|
||
|
* &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
|
||
|
* &= \frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n}
|
||
|
* \end{align*}
|
||
|
* ```
|
||
|
*
|
||
|
* - Applying Bessel's correction, we arrive at an update formula for calculating an unbiased sample covariance
|
||
|
*
|
||
|
* ```tex
|
||
|
* \begin{align*}
|
||
|
* \operatorname{cov}_n(x,y) &= \frac{n}{n-1}\cdot\frac{(n-1)\operatorname{cov}_{n-1}(x,y) + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n} \\
|
||
|
* &= \operatorname{cov}_{n-1}(x,y) + \frac{(x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1} \\
|
||
|
* &= \frac{C_{n-1} + (x_n - \bar{x}_n) (y_n - \bar{y}_{n-1})}{n-1}
|
||
|
* &= \frac{C_{n-1} + (x_n - \bar{x}_{n-1}) (y_n - \bar{y}_n)}{n-1}
|
||
|
* \end{align*}
|
||
|
* ```
|
||
|
*
|
||
|
* @param {number} [meanx] - mean value
|
||
|
* @param {number} [meany] - mean value
|
||
|
* @throws {TypeError} first argument must be a number primitive
|
||
|
* @throws {TypeError} second argument must be a number primitive
|
||
|
* @returns {Function} accumulator function
|
||
|
*
|
||
|
* @example
|
||
|
* var accumulator = incrcovariance();
|
||
|
*
|
||
|
* var v = accumulator();
|
||
|
* // returns null
|
||
|
*
|
||
|
* v = accumulator( 2.0, 1.0 );
|
||
|
* // returns 0.0
|
||
|
*
|
||
|
* v = accumulator( -5.0, 3.14 );
|
||
|
* // returns ~-7.49
|
||
|
*
|
||
|
* v = accumulator();
|
||
|
* // returns ~-7.49
|
||
|
*
|
||
|
* @example
|
||
|
* var accumulator = incrcovariance( 2.0, -3.0 );
|
||
|
*/
|
||
|
function incrcovariance( meanx, meany ) {
|
||
|
var dx;
|
||
|
var mx;
|
||
|
var my;
|
||
|
var C;
|
||
|
var N;
|
||
|
|
||
|
C = 0.0;
|
||
|
N = 0;
|
||
|
if ( arguments.length ) {
|
||
|
if ( !isNumber( meanx ) ) {
|
||
|
throw new TypeError( 'invalid argument. First argument must be a number primitive. Value: `' + meanx + '`.' );
|
||
|
}
|
||
|
if ( !isNumber( meany ) ) {
|
||
|
throw new TypeError( 'invalid argument. Second argument must be a number primitive. Value: `' + meany + '`.' );
|
||
|
}
|
||
|
mx = meanx;
|
||
|
my = meany;
|
||
|
return accumulator2;
|
||
|
}
|
||
|
mx = 0.0;
|
||
|
my = 0.0;
|
||
|
return accumulator1;
|
||
|
|
||
|
/**
|
||
|
* If provided input values, the accumulator function returns an updated unbiased sample covariance. If not provided input values, the accumulator function returns the current unbiased sample covariance.
|
||
|
*
|
||
|
* @private
|
||
|
* @param {number} [x] - new value
|
||
|
* @param {number} [y] - new value
|
||
|
* @returns {(number|null)} unbiased sample covariance or null
|
||
|
*/
|
||
|
function accumulator1( x, y ) {
|
||
|
if ( arguments.length === 0 ) {
|
||
|
if ( N === 0 ) {
|
||
|
return null;
|
||
|
}
|
||
|
if ( N === 1 ) {
|
||
|
return ( isnan( C ) ) ? NaN : 0.0;
|
||
|
}
|
||
|
return C / (N-1);
|
||
|
}
|
||
|
N += 1;
|
||
|
dx = x - mx;
|
||
|
mx += dx / N;
|
||
|
my += ( y-my ) / N;
|
||
|
C += dx * ( y-my ); // Note: repeated `y-my` is intentional, as `my` is updated when used here
|
||
|
if ( N < 2 ) {
|
||
|
return ( isnan( C ) ) ? NaN : 0.0;
|
||
|
}
|
||
|
return C / (N-1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If provided input values, the accumulator function returns an updated unbiased sample covariance. If not provided input values, the accumulator function returns the current unbiased sample covariance.
|
||
|
*
|
||
|
* @private
|
||
|
* @param {number} [x] - new value
|
||
|
* @param {number} [y] - new value
|
||
|
* @returns {(number|null)} unbiased sample covariance or null
|
||
|
*/
|
||
|
function accumulator2( x, y ) {
|
||
|
if ( arguments.length === 0 ) {
|
||
|
if ( N === 0 ) {
|
||
|
return null;
|
||
|
}
|
||
|
return C / N;
|
||
|
}
|
||
|
N += 1;
|
||
|
C += ( x-mx ) * ( y-my );
|
||
|
return C / N;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// EXPORTS //
|
||
|
|
||
|
module.exports = incrcovariance;
|