119 lines
3.9 KiB
Plaintext
119 lines
3.9 KiB
Plaintext
|
|
||
|
{{alias}}( N, correction, x, stride )
|
||
|
Computes the standard deviation of a strided array using a one-pass trial
|
||
|
mean algorithm.
|
||
|
|
||
|
The `N` and `stride` parameters determine which elements in `x` are accessed
|
||
|
at runtime.
|
||
|
|
||
|
Indexing is relative to the first index. To introduce an offset, use a typed
|
||
|
array view.
|
||
|
|
||
|
If `N <= 0`, the function returns `NaN`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
N: integer
|
||
|
Number of indexed elements.
|
||
|
|
||
|
correction: number
|
||
|
Degrees of freedom adjustment. Setting this parameter to a value other
|
||
|
than `0` has the effect of adjusting the divisor during the calculation
|
||
|
of the standard deviation according to `N - c` where `c` corresponds to
|
||
|
the provided degrees of freedom adjustment. When computing the standard
|
||
|
deviation of a population, setting this parameter to `0` is the standard
|
||
|
choice (i.e., the provided array contains data constituting an entire
|
||
|
population). When computing the corrected sample standard deviation,
|
||
|
setting this parameter to `1` is the standard choice (i.e., the provided
|
||
|
array contains data sampled from a larger population; this is commonly
|
||
|
referred to as Bessel's correction).
|
||
|
|
||
|
x: Array<number>|TypedArray
|
||
|
Input array.
|
||
|
|
||
|
stride: integer
|
||
|
Index increment.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: number
|
||
|
The standard deviation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
// Standard Usage:
|
||
|
> var x = [ 1.0, -2.0, 2.0 ];
|
||
|
> {{alias}}( x.length, 1, x, 1 )
|
||
|
~2.0817
|
||
|
|
||
|
// Using `N` and `stride` parameters:
|
||
|
> x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ];
|
||
|
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
|
> var stride = 2;
|
||
|
> {{alias}}( N, 1, x, stride )
|
||
|
~2.0817
|
||
|
|
||
|
// Using view offsets:
|
||
|
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
|
||
|
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
|
||
|
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
|
||
|
> stride = 2;
|
||
|
> {{alias}}( N, 1, x1, stride )
|
||
|
~2.0817
|
||
|
|
||
|
{{alias}}.ndarray( N, correction, x, stride, offset )
|
||
|
Computes the standard deviation of a strided array using a one-pass trial
|
||
|
mean algorithm and alternative indexing semantics.
|
||
|
|
||
|
While typed array views mandate a view offset based on the underlying
|
||
|
buffer, the `offset` parameter supports indexing semantics based on a
|
||
|
starting index.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
N: integer
|
||
|
Number of indexed elements.
|
||
|
|
||
|
correction: number
|
||
|
Degrees of freedom adjustment. Setting this parameter to a value other
|
||
|
than `0` has the effect of adjusting the divisor during the calculation
|
||
|
of the standard deviation according to `N - c` where `c` corresponds to
|
||
|
the provided degrees of freedom adjustment. When computing the standard
|
||
|
deviation of a population, setting this parameter to `0` is the standard
|
||
|
choice (i.e., the provided array contains data constituting an entire
|
||
|
population). When computing the corrected sample standard deviation,
|
||
|
setting this parameter to `1` is the standard choice (i.e., the provided
|
||
|
array contains data sampled from a larger population; this is commonly
|
||
|
referred to as Bessel's correction).
|
||
|
|
||
|
x: Array<number>|TypedArray
|
||
|
Input array.
|
||
|
|
||
|
stride: integer
|
||
|
Index increment.
|
||
|
|
||
|
offset: integer
|
||
|
Starting index.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: number
|
||
|
The standard deviation.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
// Standard Usage:
|
||
|
> var x = [ 1.0, -2.0, 2.0 ];
|
||
|
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
|
||
|
~2.0817
|
||
|
|
||
|
// Using offset parameter:
|
||
|
> var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ];
|
||
|
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
||
|
> {{alias}}.ndarray( N, 1, x, 2, 1 )
|
||
|
~2.0817
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
|