162 lines
4.7 KiB
JavaScript
162 lines
4.7 KiB
JavaScript
|
/**
|
||
|
* @license Apache-2.0
|
||
|
*
|
||
|
* Copyright (c) 2018 The Stdlib Authors.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
'use strict';
|
||
|
|
||
|
// MODULES //
|
||
|
|
||
|
var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives;
|
||
|
var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' );
|
||
|
var isArray = require( '@stdlib/assert/is-array' );
|
||
|
var setReadOnly = require( '@stdlib/utils/define-read-only-property' );
|
||
|
var hasOwnProp = require( '@stdlib/assert/has-own-property' );
|
||
|
var cdf = require( './../../base/dists/f/cdf' );
|
||
|
var copy = require( '@stdlib/utils/copy' );
|
||
|
var defaults = require( './defaults.json' );
|
||
|
var validate = require( './validate.js' );
|
||
|
var unique = require( './unique.js' );
|
||
|
var meanTable = require( './mean_table.js' );
|
||
|
var mean = require( './mean.js' );
|
||
|
var prettyPrint = require( './print.js' );
|
||
|
|
||
|
|
||
|
// MAIN //
|
||
|
|
||
|
/**
|
||
|
* Perform a one-way analysis of variance (ANOVA).
|
||
|
*
|
||
|
* @param {NumericArray} x - measured values
|
||
|
* @param {Array} factor - array of treatments
|
||
|
* @param {Options} [options] - function options
|
||
|
* @param {number} [options.alpha=0.05] - significance level
|
||
|
* @throws {TypeError} options argument must be an object
|
||
|
* @throws {TypeError} must provide valid options
|
||
|
* @throws {TypeError} `x` must be a numeric array
|
||
|
* @throws {TypeError} `factor` must be an array
|
||
|
* @throws {RangeError} `factor` must have at least two unique elements
|
||
|
* @throws {RangeError} length of `x` must be greater than or equal to two
|
||
|
* @throws {RangeError} `x` and `factor` must have the same length
|
||
|
* @returns {Object} test results
|
||
|
*/
|
||
|
function anova1( x, factor, options ) {
|
||
|
var meanSumSqTreat; // Mean sum of squares
|
||
|
var meanSumSqError;
|
||
|
var ssTreatment;
|
||
|
var sumSqTotal;
|
||
|
var sumSqError;
|
||
|
var treatment; // Index variable
|
||
|
var grandMean;
|
||
|
var nGroups;
|
||
|
var fScore;
|
||
|
var treats;
|
||
|
var means;
|
||
|
var numDf;
|
||
|
var denDf;
|
||
|
var nobs;
|
||
|
var pVal;
|
||
|
var opts;
|
||
|
var err;
|
||
|
var out;
|
||
|
var sq;
|
||
|
var i;
|
||
|
|
||
|
if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) {
|
||
|
throw new TypeError( 'invalid argument. First argument must be a numeric array. Value: `' + x + '`.' );
|
||
|
}
|
||
|
opts = copy( defaults );
|
||
|
if ( arguments.length > 2 ) {
|
||
|
err = validate( opts, options );
|
||
|
if ( err ) {
|
||
|
throw err;
|
||
|
}
|
||
|
}
|
||
|
nobs = x.length;
|
||
|
if ( nobs <= 1 ) {
|
||
|
throw new RangeError( 'invalid argument. First argument must have at least two elements. Value: `' + x + '`.' );
|
||
|
}
|
||
|
if ( !isArray( factor ) ) {
|
||
|
throw new TypeError( 'invalid argument. Second argument must be an array. Value: `' + treats + '`.' );
|
||
|
}
|
||
|
|
||
|
treats = unique( factor );
|
||
|
nGroups = treats.length;
|
||
|
if ( nGroups <= 1 ) {
|
||
|
throw new RangeError( 'invalid argument. Second argument must contain at least two unique elements. Value: `' + treats + '`.' );
|
||
|
}
|
||
|
if ( nobs !== factor.length ) {
|
||
|
throw new RangeError( 'invalid arguments. Arguments `x` and `factor` must be arrays of the same length.' );
|
||
|
}
|
||
|
|
||
|
sumSqTotal = 0.0;
|
||
|
ssTreatment = 0.0;
|
||
|
means = meanTable( x, factor, treats );
|
||
|
grandMean = mean( x );
|
||
|
|
||
|
// Now get total ss:
|
||
|
for ( i = 0; i < nobs; i++ ) {
|
||
|
sq = ( x[i] - grandMean ) * ( x[i] - grandMean );
|
||
|
sumSqTotal += sq;
|
||
|
}
|
||
|
|
||
|
sq = 0.0;
|
||
|
for ( treatment in means ) {
|
||
|
if ( hasOwnProp( means, treatment ) ) {
|
||
|
// Already have sq defined
|
||
|
sq = ( means[treatment].mean - grandMean ) *
|
||
|
( means[treatment].mean - grandMean );
|
||
|
ssTreatment += means[treatment].sampleSize * sq;
|
||
|
}
|
||
|
}
|
||
|
numDf = nGroups - 1;
|
||
|
denDf = nobs - nGroups;
|
||
|
sumSqError = sumSqTotal - ssTreatment;
|
||
|
meanSumSqTreat = ssTreatment / numDf;
|
||
|
meanSumSqError = sumSqError / denDf;
|
||
|
fScore = meanSumSqTreat / meanSumSqError;
|
||
|
|
||
|
pVal = 1.0 - cdf( fScore, numDf, denDf );
|
||
|
|
||
|
out = {};
|
||
|
|
||
|
treatment = {};
|
||
|
setReadOnly( treatment, 'df', numDf );
|
||
|
setReadOnly( treatment, 'ss', ssTreatment );
|
||
|
setReadOnly( treatment, 'ms', meanSumSqTreat );
|
||
|
setReadOnly( out, 'treatment', treatment );
|
||
|
|
||
|
err = {};
|
||
|
setReadOnly( err, 'df', denDf );
|
||
|
setReadOnly( err, 'ss', sumSqError );
|
||
|
setReadOnly( err, 'ms', meanSumSqError );
|
||
|
setReadOnly( out, 'error', err );
|
||
|
|
||
|
setReadOnly( out, 'statistic', fScore );
|
||
|
setReadOnly( out, 'pValue', pVal );
|
||
|
setReadOnly( out, 'means', means );
|
||
|
setReadOnly( out, 'method', 'One-Way ANOVA' );
|
||
|
setReadOnly( out, 'alpha', opts.alpha );
|
||
|
setReadOnly( out, 'rejected', pVal <= opts.alpha );
|
||
|
setReadOnly( out, 'print', prettyPrint( out ) );
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
// EXPORTS //
|
||
|
|
||
|
module.exports = anova1;
|