125 lines
3.9 KiB
Markdown
125 lines
3.9 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2018 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# Dirichlet Eta Function
|
|||
|
|
|||
|
> [Dirichlet eta][eta-function] function.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
The [Dirichlet eta][eta-function] function is defined by the [Dirichlet series][dirichlet-series]
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:dirichlet_eta_function" align="center" raw="\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots" alt="Dirichlet eta function"> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="\eta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s} = \frac{1}{1^s} - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \cdots" data-equation="eq:dirichlet_eta_function">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/math/base/special/dirichlet-eta/docs/img/equation_dirichlet_eta_function.svg" alt="Dirichlet eta function">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `s` is a complex variable equal to `σ + ti`. The series is convergent for all complex numbers having a real part greater than `0`.
|
|||
|
|
|||
|
Note that the [Dirichlet eta][eta-function] function is also known as the **alternating zeta function** and denoted `ζ*(s)`. The series is an alternating sum corresponding to the Dirichlet series expansion of the [Riemann zeta][@stdlib/math/base/special/riemann-zeta] function. Accordingly, the following relation holds:
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:dirichlet_riemann_relation" align="center" raw="\eta(s) = (1-2^{1-s})\zeta(s)" alt="Dirichlet-Riemann zeta relation"> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="\eta(s) = (1-2^{1-s})\zeta(s)" data-equation="eq:dirichlet_riemann_relation">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/dirichlet-eta/docs/img/equation_dirichlet_riemann_relation.svg" alt="Dirichlet-Riemann zeta relation">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `ζ(s)` is the [Riemann zeta][@stdlib/math/base/special/riemann-zeta] function.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var eta = require( '@stdlib/math/base/special/dirichlet-eta' );
|
|||
|
```
|
|||
|
|
|||
|
#### eta( s )
|
|||
|
|
|||
|
Evaluates the [Dirichlet eta][eta-function] function as a function of a real variable `s`.
|
|||
|
|
|||
|
```javascript
|
|||
|
var v = eta( 0.0 ); // Abel sum of 1-1+1-1+...
|
|||
|
// returns 0.5
|
|||
|
|
|||
|
v = eta( -1.0 ); // Abel sum of 1-2+3-4+...
|
|||
|
// returns 0.25
|
|||
|
|
|||
|
v = eta( 1.0 ); // alternating harmonic series => ln(2)
|
|||
|
// returns 0.6931471805599453
|
|||
|
|
|||
|
v = eta( 3.14 );
|
|||
|
// returns ~0.9096
|
|||
|
|
|||
|
v = eta( NaN );
|
|||
|
// returns NaN
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var linspace = require( '@stdlib/array/linspace' );
|
|||
|
var eta = require( '@stdlib/math/base/special/dirichlet-eta' );
|
|||
|
|
|||
|
var s = linspace( -50.0, 50.0, 200 );
|
|||
|
var v;
|
|||
|
var i;
|
|||
|
|
|||
|
for ( i = 0; i < s.length; i++ ) {
|
|||
|
v = eta( s[ i ] );
|
|||
|
console.log( 's: %d, η(s): %d', s[ i ], v );
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[eta-function]: https://en.wikipedia.org/wiki/Dirichlet_eta_function
|
|||
|
|
|||
|
[dirichlet-series]: https://en.wikipedia.org/wiki/Dirichlet_series
|
|||
|
|
|||
|
[@stdlib/math/base/special/riemann-zeta]: https://www.npmjs.com/package/@stdlib/math/tree/main/base/special/riemann-zeta
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|