140 lines
4.3 KiB
Markdown
140 lines
4.3 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# Lucas Polynomial
|
||
|
|
||
|
> Evaluate a [Lucas polynomial][fibonacci-polynomials].
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
A [Lucas polynomial][fibonacci-polynomials] is expressed according to the following recurrence relation
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:lucas_polynomial" align="center" raw="L_n(x) = \begin{cases}2 & \textrm{if}\ n = 0\\x & \textrm{if}\ n = 1\\x \cdot L_{n-1}(x) + L_{n-2}(x) & \textrm{if}\ n \geq 2\end{cases}" alt="Lucas polynomial."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="L_n(x) = \begin{cases}2 & \textrm{if}\ n = 0\\x & \textrm{if}\ n = 1\\x \cdot L_{n-1}(x) + L_{n-2}(x) & \textrm{if}\ n \geq 2\end{cases}" data-equation="eq:lucas_polynomial">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/lucaspoly/docs/img/equation_lucas_polynomial.svg" alt="Lucas polynomial.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
Alternatively, if `L(n,k)` is the coefficient of `x^k` in `L_n(x)`, then
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:lucas_polynomial_sum" align="center" raw="L_n(x) = \sum_{k = 0}^n L(n,k) x^k" alt="Lucas polynomial expressed as a sum."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="L_n(x) = \sum_{k = 0}^n L(n,k) x^k" data-equation="eq:lucas_polynomial_sum">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/lucaspoly/docs/img/equation_lucas_polynomial_sum.svg" alt="Lucas polynomial expressed as a sum.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
We can extend [Lucas polynomials][fibonacci-polynomials] to negative `n` using the identity
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:negalucas_polynomial" align="center" raw="L_{-n}(x) = (-1)^{n} L_n(x)" alt="NegaLucas polynomial."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="L_{-n}(x) = (-1)^{n} L_n(x)" data-equation="eq:negalucas_polynomial">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/lucaspoly/docs/img/equation_negalucas_polynomial.svg" alt="NegaLucas polynomial.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var lucaspoly = require( '@stdlib/math/base/tools/lucaspoly' );
|
||
|
```
|
||
|
|
||
|
#### lucaspoly( n, x )
|
||
|
|
||
|
Evaluates a [Lucas polynomial][fibonacci-polynomials] at a value `x`.
|
||
|
|
||
|
```javascript
|
||
|
var v = lucaspoly( 5, 2.0 ); // => 2^5 + 5*2^3 + 5*2
|
||
|
// returns 82.0
|
||
|
```
|
||
|
|
||
|
#### lucaspoly.factory( n )
|
||
|
|
||
|
Uses code generation to generate a `function` for evaluating a [Lucas polynomial][fibonacci-polynomials].
|
||
|
|
||
|
```javascript
|
||
|
var polyval = lucaspoly.factory( 5 );
|
||
|
|
||
|
var v = polyval( 1.0 ); // => 1^5 + 5*1^3 + 5
|
||
|
// returns 11.0
|
||
|
|
||
|
v = polyval( 2.0 ); // => 2^5 + 5*2^3 + 5*2
|
||
|
// returns 82.0
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- For hot code paths, a compiled function will be more performant than `lucaspoly()`.
|
||
|
- While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var lucaspoly = require( '@stdlib/math/base/tools/lucaspoly' );
|
||
|
|
||
|
var i;
|
||
|
|
||
|
// Compute the negaLucas and Lucas numbers...
|
||
|
for ( i = -76; i < 77; i++ ) {
|
||
|
console.log( 'L_%d = %d', i, lucaspoly( i, 1.0 ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[fibonacci-polynomials]: https://en.wikipedia.org/wiki/Fibonacci_polynomials
|
||
|
|
||
|
[mdn-csp]: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|