220 lines
6.5 KiB
Markdown
220 lines
6.5 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2020 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# dsdot
|
|||
|
|
|||
|
> Calculate the dot product with extended accumulation and result of two single-precision floating-point vectors.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
The [dot product][dot-product] (or scalar product) is defined as
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:dot_product" align="center" raw="\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}" alt="Dot product definition."> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}" data-equation="eq:dot_product">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6df935107d628eec415bebdab2ef9f78dab10422/lib/node_modules/@stdlib/blas/base/dsdot/docs/img/equation_dot_product.svg" alt="Dot product definition.">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var dsdot = require( '@stdlib/blas/base/dsdot' );
|
|||
|
```
|
|||
|
|
|||
|
#### dsdot( N, x, strideX, y, strideY )
|
|||
|
|
|||
|
Calculates the dot product of vectors `x` and `y` with extended accumulation and result.
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
|
|||
|
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
|
|||
|
|
|||
|
var z = dsdot( x.length, x, 1, y, 1 );
|
|||
|
// returns -5.0
|
|||
|
```
|
|||
|
|
|||
|
The function has the following parameters:
|
|||
|
|
|||
|
- **N**: number of indexed elements.
|
|||
|
- **x**: input [`Float32Array`][@stdlib/array/float32].
|
|||
|
- **strideX**: index increment for `x`.
|
|||
|
- **y**: input [`Float32Array`][@stdlib/array/float32].
|
|||
|
- **strideY**: index increment for `y`.
|
|||
|
|
|||
|
The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. For example, to calculate the dot product of every other value in `x` and the first `N` elements of `y` in reverse order,
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
|||
|
var y = new Float32Array( [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ] );
|
|||
|
|
|||
|
var N = floor( x.length / 2 );
|
|||
|
|
|||
|
var z = dsdot( N, x, 2, y, -1 );
|
|||
|
// returns 9.0
|
|||
|
```
|
|||
|
|
|||
|
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
|
|||
|
|
|||
|
<!-- eslint-disable stdlib/capitalized-comments -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
// Initial arrays...
|
|||
|
var x0 = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
|||
|
var y0 = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
|
|||
|
|
|||
|
// Create offset views...
|
|||
|
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
|
|||
|
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
|
|||
|
|
|||
|
var N = floor( x0.length / 2 );
|
|||
|
|
|||
|
var z = dsdot( N, x1, -2, y1, 1 );
|
|||
|
// returns 128.0
|
|||
|
```
|
|||
|
|
|||
|
#### dsdot.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
|
|||
|
|
|||
|
Calculates the dot product of `x` and `y` with extended accumulation and result and using alternative indexing semantics.
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 4.0, 2.0, -3.0, 5.0, -1.0 ] );
|
|||
|
var y = new Float32Array( [ 2.0, 6.0, -1.0, -4.0, 8.0 ] );
|
|||
|
|
|||
|
var z = dsdot.ndarray( x.length, x, 1, 0, y, 1, 0 );
|
|||
|
// returns -5.0
|
|||
|
```
|
|||
|
|
|||
|
The function has the following additional parameters:
|
|||
|
|
|||
|
- **offsetX**: starting index for `x`.
|
|||
|
- **offsetY**: starting index for `y`.
|
|||
|
|
|||
|
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offsetX` and `offsetY` parameters support indexing semantics based on starting indices. For example, to calculate the dot product of every other value in `x` starting from the second value with the last 3 elements in `y` in reverse order
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
|||
|
var y = new Float32Array( [ 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
|
|||
|
|
|||
|
var N = floor( x.length / 2 );
|
|||
|
|
|||
|
var z = dsdot.ndarray( N, x, 2, 1, y, -1, y.length-1 );
|
|||
|
// returns 128.0
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="notes">
|
|||
|
|
|||
|
## Notes
|
|||
|
|
|||
|
- If `N <= 0`, both functions return `0.0`.
|
|||
|
- `dsdot()` corresponds to the [BLAS][blas] level 1 function [`dsdot`][dsdot].
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.notes -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var randu = require( '@stdlib/random/base/randu' );
|
|||
|
var round = require( '@stdlib/math/base/special/round' );
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var dsdot = require( '@stdlib/blas/base/dsdot' );
|
|||
|
|
|||
|
var x;
|
|||
|
var y;
|
|||
|
var i;
|
|||
|
|
|||
|
x = new Float32Array( 10 );
|
|||
|
y = new Float32Array( 10 );
|
|||
|
for ( i = 0; i < x.length; i++ ) {
|
|||
|
x[ i ] = round( randu() * 100.0 );
|
|||
|
y[ i ] = round( randu() * 10.0 );
|
|||
|
}
|
|||
|
console.log( x );
|
|||
|
console.log( y );
|
|||
|
|
|||
|
var z = dsdot( x.length, x, 1, y, -1 );
|
|||
|
console.log( z );
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
* * *
|
|||
|
|
|||
|
<section class="references">
|
|||
|
|
|||
|
## References
|
|||
|
|
|||
|
- Lawson, Charles L., Richard J. Hanson, Fred T. Krogh, and David Ronald Kincaid. 1979. "Algorithm 539: Basic Linear Algebra Subprograms for Fortran Usage \[F1]." _ACM Transactions on Mathematical Software_ 5 (3). New York, NY, USA: Association for Computing Machinery: 324–25. doi:[10.1145/355841.355848][@lawson:1979a].
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.references -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[dot-product]: https://en.wikipedia.org/wiki/Dot_product
|
|||
|
|
|||
|
[blas]: http://www.netlib.org/blas
|
|||
|
|
|||
|
[dsdot]: http://www.netlib.org/lapack/explore-html/de/da4/group__double__blas__level1.html
|
|||
|
|
|||
|
[@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
|
|||
|
|
|||
|
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
|
|||
|
|
|||
|
[@lawson:1979a]: https://doi.org/10.1145/355841.355848
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|