time-to-botec/js/node_modules/@stdlib/stats/lowess/lib/main.js

133 lines
4.2 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives;
var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' );
var range = require( './../../base/range' );
var lowess = require( './lowess.js' );
var validate = require( './validate.js' );
// FUNCTIONS //
/**
* Comparator function used to sort (x,y)-pairs in ascending order by the first coordinate.
*
* @private
* @param {Array} a - first pair
* @param {Array} b - second pair
* @returns {number} difference between `a` and `b`
*/
function ascending( a, b ) {
return a[ 0 ] - b[ 0 ];
}
// MAIN //
/**
* Locally-weighted polynomial regression via the LOWESS algorithm.
*
* ## References
*
* - Cleveland, William S. 1979. "Robust Locally and Smoothing Weighted Regression Scatterplots." _Journal of the American Statistical Association_ 74 (368): 82936. doi:[10.1080/01621459.1979.10481038](https://doi.org/10.1080/01621459.1979.10481038).
* - Cleveland, William S. 1981. "Lowess: A program for smoothing scatterplots by robust locally weighted regression." _American Statistician_ 35 (1): 5455. doi:[10.2307/2683591](https://doi.org/10.2307/2683591).
*
* @param {NumericArray} x - ordered x-axis values (abscissa values)
* @param {NumericArray} y - corresponding y-axis values (ordinate values)
* @param {Options} options - function options
* @param {PositiveNumber} [options.f=2/3] - smoother span (proportion of points which influence smoothing at each value)
* @param {integer} [options.nsteps=3] - number of iterations in the robust fit (fewer iterations translates to faster function execution)
* @param {NonNegativeNumber} [options.delta] - nonnegative parameter which may be used to reduce the number of computations
* @param {boolean} [options.sorted=false] - boolean indicating if the input array `x` is already in sorted order
* @throws {TypeError} first argument must be a numeric array
* @throws {TypeError} second argument must be a numeric array
* @throws {Error} arguments `x` and `y` must have the same length
* @returns {Object} ordered x-values and fitted values
*/
function main( x, y, options ) {
var nsteps;
var delta;
var opts;
var err;
var xy;
var f;
var i;
var n;
var r;
if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) {
throw new TypeError( 'invalid argument. First argument `x` must be a numeric array. Value: `' + x + '`.' );
}
if ( !isTypedArrayLike( y ) && !isNumberArray( y ) ) {
throw new TypeError( 'invalid argument. Second argument `y` must be a numeric array. Value: `' + y + '`.' );
}
n = x.length;
if ( y.length !== n ) {
throw new Error( 'invalid arguments. Arguments `x` and `y` must have the same length.' );
}
opts = {};
if ( arguments.length > 2 ) {
err = validate( opts, options );
if ( err ) {
throw err;
}
}
// Input data has to be sorted:
if ( opts.sorted !== true ) {
// Copy to prevent mutation and sort by x:
xy = new Array( n );
for ( i = 0; i < n; i++ ) {
xy[ i ] = [ x[ i ], y[ i ] ];
}
xy.sort( ascending ); // TODO: Revisit once we have function for sorting multiple arrays by the elements of one of the arrays
x = new Array( n );
y = new Array( n );
for ( i = 0; i < n; i++ ) {
x[ i ] = xy[ i ][ 0 ];
y[ i ] = xy[ i ][ 1 ];
}
}
if ( opts.nsteps === void 0 ) {
nsteps = 3;
} else {
nsteps = opts.nsteps;
}
if ( opts.f === void 0 ) {
f = 2.0/3.0;
} else {
f = opts.f;
}
if ( opts.delta === void 0 ) {
r = range( n, x, 1 );
delta = 0.01 * r;
} else {
delta = opts.delta;
}
return lowess( x, y, n, f, nsteps, delta );
}
// EXPORTS //
module.exports = main;