156 lines
4.6 KiB
Markdown
156 lines
4.6 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# Logarithm of Binomial Coefficient
|
||
|
|
||
|
> Compute the natural logarithm of the [binomial coefficient][binomial-coefficient].
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The natural logarithm of the [binomial coefficient][binomial-coefficient] is
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:binomcoefln_function" align="center" raw="f(n,k) = \ln {n \choose k}" alt="Natural logarithm of the binomial coefficient."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="f(n,k) = \ln {n \choose k}" data-equation="eq:binomcoefln_function">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/binomcoefln/docs/img/equation_binomcoefln_function.svg" alt="Natural logarithm of the binomial coefficient.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
The [binomial coefficient][binomial-coefficient] of two nonnegative integers `n` and `k` is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:binomial_coefficient" align="center" raw="\binom {n}{k} = \frac{n!}{k!\,(n-k)!} \quad \text{for }\ 0\leq k\leq n" alt="Factorial formula for the Binomial coefficient."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\binom {n}{k} = \frac{n!}{k!\,(n-k)!} \quad \text{for }\ 0\leq k\leq n" data-equation="eq:binomial_coefficient">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/binomcoefln/docs/img/equation_binomial_coefficient.svg" alt="Factorial formula for the Binomial coefficient.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
The [binomial coefficient][binomial-coefficient] can be generalized to negative integers `n` as follows:
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:binomial_coefficient_negative_integers" align="center" raw="\binom {-n}{k} = (-1)^{k} \binom{n + k - 1}{k} = (-1)^{k} \left(\!\!{\binom {n}{k}}\!\!\right)" alt="Generalization of the binomial coefficient to negative n."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\binom {-n}{k} = (-1)^{k} \binom{n + k - 1}{k} = (-1)^{k} \left(\!\!{\binom {n}{k}}\!\!\right)" data-equation="eq:binomial_coefficient_negative_integers">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/math/base/special/binomcoefln/docs/img/equation_binomial_coefficient_negative_integers.svg" alt="Generalization of the binomial coefficient to negative n.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var binomcoefln = require( '@stdlib/math/base/special/binomcoefln' );
|
||
|
```
|
||
|
|
||
|
#### binomcoefln( n, k )
|
||
|
|
||
|
Evaluates the [binomial coefficient][binomial-coefficient] of two integers `n` and `k`.
|
||
|
|
||
|
```javascript
|
||
|
var v = binomcoefln( 8, 2 );
|
||
|
// returns ~3.332
|
||
|
|
||
|
v = binomcoefln( 0, 0 );
|
||
|
// returns 0.0
|
||
|
|
||
|
v = binomcoefln( -4, 2 );
|
||
|
// returns ~2.303
|
||
|
|
||
|
v = binomcoefln( 88, 3 );
|
||
|
// returns ~11.606
|
||
|
|
||
|
v = binomcoefln( NaN, 3 );
|
||
|
// returns NaN
|
||
|
|
||
|
v = binomcoefln( 5, NaN );
|
||
|
// returns NaN
|
||
|
|
||
|
v = binomcoefln( NaN, NaN );
|
||
|
// returns NaN
|
||
|
```
|
||
|
|
||
|
For negative `k`, the function returns `-Infinity`.
|
||
|
|
||
|
```javascript
|
||
|
var v = binomcoefln( 2, -1 );
|
||
|
// returns -Infinity
|
||
|
|
||
|
v = binomcoefln( -3, -1 );
|
||
|
// returns -Infinity
|
||
|
```
|
||
|
|
||
|
The function returns `NaN` for non-integer `n` or `k`.
|
||
|
|
||
|
```javascript
|
||
|
var v = binomcoefln( 2, 1.5 );
|
||
|
// returns NaN
|
||
|
|
||
|
v = binomcoefln( 5.5, 2 );
|
||
|
// returns NaN
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var round = require( '@stdlib/math/base/special/round' );
|
||
|
var binomcoefln = require( '@stdlib/math/base/special/binomcoefln' );
|
||
|
|
||
|
var n;
|
||
|
var k;
|
||
|
var i;
|
||
|
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
n = round( (randu()*40.0) - 10.0 );
|
||
|
k = round( randu()*20.0 );
|
||
|
console.log( 'ln( %d choose %d ) = %d', n, k, binomcoefln( n, k ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[binomial-coefficient]: https://en.wikipedia.org/wiki/Binomial_coefficient
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|