49 lines
1.3 KiB
Markdown
49 lines
1.3 KiB
Markdown
|
## Regression Models
|
||
|
|
||
|
## Instance Functionality
|
||
|
|
||
|
### ols( endog, exog )
|
||
|
|
||
|
What's the `endog`, `exog`?
|
||
|
|
||
|
Please see:
|
||
|
|
||
|
http://statsmodels.sourceforge.net/stable/endog_exog.html
|
||
|
|
||
|
`ols` use ordinary least square(OLS) method to estimate linear model and return
|
||
|
a `model`object.
|
||
|
|
||
|
`model` object attribute is vrey like to `statsmodels` result object attribute
|
||
|
(nobs,coef,...).
|
||
|
|
||
|
The following example is compared by `statsmodels`. They take same result
|
||
|
exactly.
|
||
|
|
||
|
var A=[[1,2,3],
|
||
|
[1,1,0],
|
||
|
[1,-2,3],
|
||
|
[1,3,4],
|
||
|
[1,-10,2],
|
||
|
[1,4,4],
|
||
|
[1,10,2],
|
||
|
[1,3,2],
|
||
|
[1,4,-1]];
|
||
|
var b=[1,-2,3,4,-5,6,7,-8,9];
|
||
|
var model=jStat.models.ols(b,A);
|
||
|
|
||
|
// coefficient estimated
|
||
|
model.coef // -> [0.662197222856431, 0.5855663255775336, 0.013512111085743017]
|
||
|
|
||
|
// R2
|
||
|
model.R2 // -> 0.309
|
||
|
|
||
|
// t test P-value
|
||
|
model.t.p // -> [0.8377444317889267, 0.15296736158442314, 0.9909627983826583]
|
||
|
|
||
|
// f test P-value
|
||
|
model.f.pvalue // -> 0.3306363671859872
|
||
|
|
||
|
The adjusted R^2 provided by jStat is the formula variously called the 'Wherry Formula',
|
||
|
'Ezekiel Formula', 'Wherry/McNemar Formula', or the 'Cohen/Cohen Formula', and is the same
|
||
|
as the adjusted R^2 value provided by R's `summary.lm` method on a linear model.
|