136 lines
3.7 KiB
Markdown
136 lines
3.7 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# Kernel Tangent
|
||
|
|
||
|
> Compute the [tangent][tangent] of a number on `[-π/4, π/4]`.
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var kernelTan = require( '@stdlib/math/base/special/kernel-tan' );
|
||
|
```
|
||
|
|
||
|
#### kernelTan( x, y, k )
|
||
|
|
||
|
Computes the [tangent][tangent] of a `number` on `[-π/4, π/4]`. For increased accuracy, the number for which the [tangent][tangent] should be evaluated can be supplied as a [double-double number][double-double-arithmetic] (i.e., a non-evaluated sum of two [double-precision floating-point numbers][ieee754] `x` and `y`).
|
||
|
|
||
|
```javascript
|
||
|
var out = kernelTan( 3.141592653589793/4.0, 0.0, 1 );
|
||
|
// returns ~1.0
|
||
|
|
||
|
out = kernelTan( 3.141592653589793/6.0, 0.0, 1 );
|
||
|
// returns ~0.577
|
||
|
|
||
|
out = kernelTan( 0.664, 5.288e-17, 1 );
|
||
|
// returns ~0.783
|
||
|
```
|
||
|
|
||
|
If `k = 1`, the function returns `tan(x+y)`. To return the negative inverse `-1/tan(x+y)`, set `k = -1`.
|
||
|
|
||
|
```javascript
|
||
|
var out = kernelTan( 3.141592653589793/4.0, 0.0, -1 );
|
||
|
// returns ~-1.0
|
||
|
```
|
||
|
|
||
|
If either `x` or `y` is `NaN`, the function returns `NaN`.
|
||
|
|
||
|
```javascript
|
||
|
var out = kernelTan( NaN, 0.0, 1 );
|
||
|
// returns NaN
|
||
|
|
||
|
out = kernelTan( 3.0, NaN, 1 );
|
||
|
// returns NaN
|
||
|
|
||
|
out = kernelTan( NaN, NaN, 1 );
|
||
|
// returns NaN
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- As components of a [double-double number][double-double-arithmetic], the two [double-precision floating-point numbers][ieee754] `x` and `y` must satisfy
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:double_double_inequality" align="center" raw="|y| \leq \frac{1}{2} \operatorname{ulp}(x)" alt="Inequality for the two components of a double-double number."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="|y| \leq \frac{1}{2} \operatorname{ulp}(x)" data-equation="eq:double_double_inequality">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/kernel-tan/docs/img/equation_double_double_inequality.svg" alt="Inequality for the two components of a double-double number.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `ulp` stands for [units in the last place][ulp].
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var linspace = require( '@stdlib/array/linspace' );
|
||
|
var binomial = require( '@stdlib/random/base/binomial' ).factory;
|
||
|
var PI = require( '@stdlib/constants/float64/pi' );
|
||
|
var kernelTan = require( '@stdlib/math/base/special/kernel-tan' );
|
||
|
|
||
|
var x = linspace( -PI/4.0, PI/4.0, 100 );
|
||
|
var rbinom = binomial( 1, 0.5 );
|
||
|
|
||
|
var descr;
|
||
|
var i;
|
||
|
var k;
|
||
|
|
||
|
for ( i = 0; i < x.length; i++ ) {
|
||
|
k = rbinom();
|
||
|
descr = ( k === 1 ) ? 'tan(%d) = %d' : '-1/tan(%d) = %d';
|
||
|
console.log( descr, x[ i ], kernelTan( x[ i ], 0.0, k ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[tangent]: https://en.wikipedia.org/wiki/Tangent
|
||
|
|
||
|
[double-double-arithmetic]: https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic
|
||
|
|
||
|
[ieee754]: https://en.wikipedia.org/wiki/IEEE_floating_point
|
||
|
|
||
|
[ulp]: https://en.wikipedia.org/wiki/Unit_in_the_last_place
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|