96 lines
2.3 KiB
C
96 lines
2.3 KiB
C
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2020 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
#include "stdlib/stats/base/dnanvarianceyc.h"
|
|||
|
#include <stdint.h>
|
|||
|
|
|||
|
/**
|
|||
|
* Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
|
|||
|
*
|
|||
|
* ## Method
|
|||
|
*
|
|||
|
* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).
|
|||
|
*
|
|||
|
* @param N number of indexed elements
|
|||
|
* @param correction degrees of freedom adjustment
|
|||
|
* @param X input array
|
|||
|
* @param stride stride length
|
|||
|
* @return output value
|
|||
|
*/
|
|||
|
double stdlib_strided_dnanvarianceyc( const int64_t N, const double correction, const double *X, const int64_t stride ) {
|
|||
|
double sum;
|
|||
|
int64_t ix;
|
|||
|
double nc;
|
|||
|
double n;
|
|||
|
double S;
|
|||
|
double v;
|
|||
|
double d;
|
|||
|
double i;
|
|||
|
|
|||
|
if ( N <= 0 ) {
|
|||
|
return 0.0 / 0.0; // NaN
|
|||
|
}
|
|||
|
if ( N == 1 || stride == 0 ) {
|
|||
|
v = X[ 0 ];
|
|||
|
if ( v == v && (double)N-correction > 0.0 ) {
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
return 0.0 / 0.0; // NaN
|
|||
|
}
|
|||
|
if ( stride < 0 ) {
|
|||
|
ix = (1-N) * stride;
|
|||
|
} else {
|
|||
|
ix = 0;
|
|||
|
}
|
|||
|
// Find the first non-NaN element...
|
|||
|
for ( i = 0; i < N; i++ ) {
|
|||
|
v = X[ ix ];
|
|||
|
if ( v == v ) {
|
|||
|
break;
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
}
|
|||
|
if ( i == N ) {
|
|||
|
return 0.0 / 0.0; // NaN
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
sum = v;
|
|||
|
S = 0.0;
|
|||
|
n = 1.0;
|
|||
|
i += 1;
|
|||
|
for (; i < N; i++ ) {
|
|||
|
v = X[ ix ];
|
|||
|
if ( v == v ) {
|
|||
|
n += 1.0;
|
|||
|
sum += v;
|
|||
|
d = (n*v) - sum;
|
|||
|
S += (1.0/(n*(n-1.0))) * d * d;
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
}
|
|||
|
nc = n - correction;
|
|||
|
if ( nc <= 0.0 ) {
|
|||
|
return 0.0 / 0.0; // NaN
|
|||
|
}
|
|||
|
return S / nc;
|
|||
|
}
|