time-to-botec/js/node_modules/@stdlib/stats/base/dnanvarianceyc/src/dnanvarianceyc.c

96 lines
2.3 KiB
C
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/dnanvarianceyc.h"
#include <stdint.h>
/**
* Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
*
* ## Method
*
* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).
*
* ## References
*
* - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 65765. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).
*
* @param N number of indexed elements
* @param correction degrees of freedom adjustment
* @param X input array
* @param stride stride length
* @return output value
*/
double stdlib_strided_dnanvarianceyc( const int64_t N, const double correction, const double *X, const int64_t stride ) {
double sum;
int64_t ix;
double nc;
double n;
double S;
double v;
double d;
double i;
if ( N <= 0 ) {
return 0.0 / 0.0; // NaN
}
if ( N == 1 || stride == 0 ) {
v = X[ 0 ];
if ( v == v && (double)N-correction > 0.0 ) {
return 0.0;
}
return 0.0 / 0.0; // NaN
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
// Find the first non-NaN element...
for ( i = 0; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
break;
}
ix += stride;
}
if ( i == N ) {
return 0.0 / 0.0; // NaN
}
ix += stride;
sum = v;
S = 0.0;
n = 1.0;
i += 1;
for (; i < N; i++ ) {
v = X[ ix ];
if ( v == v ) {
n += 1.0;
sum += v;
d = (n*v) - sum;
S += (1.0/(n*(n-1.0))) * d * d;
}
ix += stride;
}
nc = n - correction;
if ( nc <= 0.0 ) {
return 0.0 / 0.0; // NaN
}
return S / nc;
}