74 lines
2.0 KiB
C
74 lines
2.0 KiB
C
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2020 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
#include "stdlib/stats/base/svarianceyc.h"
|
|||
|
#include <stdint.h>
|
|||
|
|
|||
|
/**
|
|||
|
* Computes the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.
|
|||
|
*
|
|||
|
* ## Method
|
|||
|
*
|
|||
|
* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).
|
|||
|
*
|
|||
|
* @param N number of indexed elements
|
|||
|
* @param correction degrees of freedom adjustment
|
|||
|
* @param X input array
|
|||
|
* @param stride stride length
|
|||
|
* @return output value
|
|||
|
*/
|
|||
|
float stdlib_strided_svarianceyc( const int64_t N, const float correction, const float *X, const int64_t stride ) {
|
|||
|
int64_t ix;
|
|||
|
int64_t i;
|
|||
|
double di;
|
|||
|
float sum;
|
|||
|
double n;
|
|||
|
float S;
|
|||
|
float v;
|
|||
|
float d;
|
|||
|
|
|||
|
n = (double)N - (double)correction;
|
|||
|
if ( N <= 0 || n <= 0.0f ) {
|
|||
|
return 0.0f / 0.0f; // NaN
|
|||
|
}
|
|||
|
if ( N == 1 || stride == 0 ) {
|
|||
|
return 0.0f;
|
|||
|
}
|
|||
|
if ( stride < 0 ) {
|
|||
|
ix = (1-N) * stride;
|
|||
|
} else {
|
|||
|
ix = 0;
|
|||
|
}
|
|||
|
sum = X[ ix ];
|
|||
|
ix += stride;
|
|||
|
S = 0.0f;
|
|||
|
for ( i = 2; i <= N; i++ ) {
|
|||
|
di = (double)i;
|
|||
|
v = X[ ix ];
|
|||
|
sum += v;
|
|||
|
d = (float)(di*(double)v) - sum;
|
|||
|
S += (float)(1.0/(di*(di-1.0))) * d * d;
|
|||
|
ix += stride;
|
|||
|
}
|
|||
|
return (double)S / n;
|
|||
|
}
|