time-to-botec/python/samples.py

56 lines
1.4 KiB
Python
Raw Normal View History

2022-11-30 01:35:53 +00:00
# imports
import numpy as np
rng = np.random.default_rng(123)
DEFAULT_N = 100000
# three simple functions
def normal(mean, std, n=DEFAULT_N):
return np.array(rng.normal(mean, std, n))
def lognormal(mean, std, n=DEFAULT_N):
return np.array(rng.lognormal(mean, std, n))
def to(low, high, n=DEFAULT_N):
normal95confidencePoint = 1.6448536269514722
logLow = np.log(low)
logHigh = np.log(high)
meanlog = (logLow + logHigh)/2
sdlog = (logHigh - logLow) / (2.0 * normal95confidencePoint)
return lognormal(meanlog, sdlog, n)
def mixture(samples_list, weights_array, n=DEFAULT_N):
normalized_weights = weights_array/sum(weights_array)
cummulative_sums = np.cumsum(normalized_weights)
helper_probs = rng.random(n)
results = np.empty(n)
for i in range(n):
helper_list = [j for j in range(
len(cummulative_sums)) if cummulative_sums[j] > helper_probs[i]]
if len(helper_list) == 0:
helper_loc = 0
else:
helper_loc = helper_list[0]
target_samples = samples_list[helper_loc]
result = rng.choice(target_samples, 1)[0]
results[i] = result
return (results)
# Example
p_a = 0.8
p_b = 0.5
p_c = p_a * p_b
dists = [[0], [1], to(1, 3), to(2, 10)]
# print(dists)
weights = np.array([1 - p_c, p_c/2, p_c/4, p_c/4])
# print(weights)
result = mixture(dists, weights)
mean_result = np.mean(result)
print(mean_result)