216 lines
6.6 KiB
Markdown
216 lines
6.6 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# incrcovmat
|
||
|
|
||
|
> Compute an [unbiased sample covariance matrix][covariance-matrix] incrementally.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
A [covariance matrix][covariance-matrix] is an M-by-M matrix whose elements specified by indices `j` and `k` are the [covariances][covariance-matrix] between the jth and kth data variables. For unknown population means, the [unbiased sample covariance][covariance-matrix] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_unknown_means" align="center" raw="\operatorname{cov_{jkn}} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_{ij} - \bar{x}_{jn})(x_{ik} - \bar{x}_{kn})" alt="Equation for the unbiased sample covariance for unknown population means."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{cov_{jkn}} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_{ij} - \bar{x}_{jn})(x_{ik} - \bar{x}_{kn})" data-equation="eq:unbiased_sample_covariance_unknown_means">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/covmat/docs/img/equation_unbiased_sample_covariance_unknown_means.svg" alt="Equation for the unbiased sample covariance for unknown population means.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
For known population means, the [unbiased sample covariance][covariance-matrix] is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_known_means" align="center" raw="\operatorname{cov_{jkn}} = \frac{1}{n} \sum_{i=0}^{n-1} (x_{ij} - \mu_{j})(x_{ik} - \mu_{k})" alt="Equation for the unbiased sample covariance for known population means."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{cov_{jkn}} = \frac{1}{n} \sum_{i=0}^{n-1} (x_{ij} - \mu_{j})(x_{ik} - \mu_{k})" data-equation="eq:unbiased_sample_covariance_known_means">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@566f739b0d9a5b720546f84f74de841b8d5e0c54/lib/node_modules/@stdlib/stats/incr/covmat/docs/img/equation_unbiased_sample_covariance_known_means.svg" alt="Equation for the unbiased sample covariance for known population means.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var incrcovmat = require( '@stdlib/stats/incr/covmat' );
|
||
|
```
|
||
|
|
||
|
#### incrcovmat( out\[, means] )
|
||
|
|
||
|
Returns an accumulator `function` which incrementally computes an [unbiased sample covariance matrix][covariance-matrix].
|
||
|
|
||
|
```javascript
|
||
|
// Create an accumulator for computing a 2-dimensional covariance matrix:
|
||
|
var accumulator = incrcovmat( 2 );
|
||
|
```
|
||
|
|
||
|
The `out` argument may be either the order of the [covariance matrix][covariance-matrix] or a square 2-dimensional [`ndarray`][@stdlib/ndarray/ctor] for storing the [unbiased sample covariance matrix][covariance-matrix].
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var ndarray = require( '@stdlib/ndarray/ctor' );
|
||
|
|
||
|
var buffer = new Float64Array( 4 );
|
||
|
var shape = [ 2, 2 ];
|
||
|
var strides = [ 2, 1 ];
|
||
|
|
||
|
// Create a 2-dimensional output covariance matrix:
|
||
|
var cov = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
|
||
|
|
||
|
var accumulator = incrcovmat( cov );
|
||
|
```
|
||
|
|
||
|
When means are known, the function supports providing a 1-dimensional [`ndarray`][@stdlib/ndarray/ctor] containing mean values.
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var ndarray = require( '@stdlib/ndarray/ctor' );
|
||
|
|
||
|
var buffer = new Float64Array( 2 );
|
||
|
var shape = [ 2 ];
|
||
|
var strides = [ 1 ];
|
||
|
|
||
|
var means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
|
||
|
|
||
|
means.set( 0, 3.0 );
|
||
|
means.set( 1, -5.5 );
|
||
|
|
||
|
var accumulator = incrcovmat( 2, means );
|
||
|
```
|
||
|
|
||
|
#### accumulator( \[vector] )
|
||
|
|
||
|
If provided a data vector, the accumulator function returns an updated [unbiased sample covariance matrix][covariance-matrix]. If not provided a data vector, the accumulator function returns the current [unbiased sample covariance matrix][covariance-matrix].
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var ndarray = require( '@stdlib/ndarray/ctor' );
|
||
|
|
||
|
var buffer = new Float64Array( 4 );
|
||
|
var shape = [ 2, 2 ];
|
||
|
var strides = [ 2, 1 ];
|
||
|
var cov = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
|
||
|
|
||
|
buffer = new Float64Array( 2 );
|
||
|
shape = [ 2 ];
|
||
|
strides = [ 1 ];
|
||
|
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
|
||
|
|
||
|
var accumulator = incrcovmat( cov );
|
||
|
|
||
|
vec.set( 0, 2.0 );
|
||
|
vec.set( 1, 1.0 );
|
||
|
|
||
|
var out = accumulator( vec );
|
||
|
// returns <ndarray>
|
||
|
|
||
|
var bool = ( out === cov );
|
||
|
// returns true
|
||
|
|
||
|
vec.set( 0, 1.0 );
|
||
|
vec.set( 1, -5.0 );
|
||
|
|
||
|
out = accumulator( vec );
|
||
|
// returns <ndarray>
|
||
|
|
||
|
vec.set( 0, 3.0 );
|
||
|
vec.set( 1, 3.14 );
|
||
|
|
||
|
out = accumulator( vec );
|
||
|
// returns <ndarray>
|
||
|
|
||
|
out = accumulator();
|
||
|
// returns <ndarray>
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var ndarray = require( '@stdlib/ndarray/ctor' );
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var incrcovmat = require( '@stdlib/stats/incr/covmat' );
|
||
|
|
||
|
var cov;
|
||
|
var cxy;
|
||
|
var cyx;
|
||
|
var vx;
|
||
|
var vy;
|
||
|
var i;
|
||
|
|
||
|
// Initialize an accumulator for a 2-dimensional covariance matrix:
|
||
|
var accumulator = incrcovmat( 2 );
|
||
|
|
||
|
// Create a 1-dimensional data vector:
|
||
|
var buffer = new Float64Array( 2 );
|
||
|
var shape = [ 2 ];
|
||
|
var strides = [ 1 ];
|
||
|
|
||
|
var vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
|
||
|
|
||
|
// For each simulated data vector, update the unbiased sample covariance matrix...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
vec.set( 0, randu()*100.0 );
|
||
|
vec.set( 1, randu()*100.0 );
|
||
|
cov = accumulator( vec );
|
||
|
|
||
|
vx = cov.get( 0, 0 ).toFixed( 4 );
|
||
|
vy = cov.get( 1, 1 ).toFixed( 4 );
|
||
|
cxy = cov.get( 0, 1 ).toFixed( 4 );
|
||
|
cyx = cov.get( 1, 0 ).toFixed( 4 );
|
||
|
|
||
|
console.log( '[ %d, %d\n %d, %d ]', vx, cxy, cyx, vy );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[covariance-matrix]: https://en.wikipedia.org/wiki/Covariance_matrix
|
||
|
|
||
|
[@stdlib/ndarray/ctor]: https://www.npmjs.com/package/@stdlib/ndarray-ctor
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|