time-to-botec/js/node_modules/@stdlib/stats/base/dnanvariancewd/lib/dnanvariancewd.js

95 lines
2.3 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MAIN //
/**
* Computes the variance of a double-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.
*
* ## References
*
* - Welford, B. P. 1962. "Note on a Method for Calculating Corrected Sums of Squares and Products." _Technometrics_ 4 (3). Taylor & Francis: 41920. doi:[10.1080/00401706.1962.10490022](https://doi.org/10.1080/00401706.1962.10490022).
* - van Reeken, A. J. 1968. "Letters to the Editor: Dealing with Neely's Algorithms." _Communications of the ACM_ 11 (3): 14950. doi:[10.1145/362929.362961](https://doi.org/10.1145/362929.362961).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Float64Array} x - input array
* @param {integer} stride - stride length
* @returns {number} variance
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
* var N = x.length;
*
* var v = dnanvariancewd( N, 1, x, 1 );
* // returns ~4.3333
*/
function dnanvariancewd( N, correction, x, stride ) {
var delta;
var mu;
var M2;
var ix;
var nc;
var v;
var n;
var i;
if ( N <= 0 ) {
return NaN;
}
if ( N === 1 || stride === 0 ) {
v = x[ 0 ];
if ( v === v && N-correction > 0.0 ) {
return 0.0;
}
return NaN;
}
if ( stride < 0 ) {
ix = (1-N) * stride;
} else {
ix = 0;
}
M2 = 0.0;
mu = 0.0;
n = 0;
for ( i = 0; i < N; i++ ) {
v = x[ ix ];
if ( v === v ) {
delta = v - mu;
n += 1;
mu += delta / n;
M2 += delta * ( v - mu );
}
ix += stride;
}
nc = n - correction;
if ( nc <= 0.0 ) {
return NaN;
}
return M2 / nc;
}
// EXPORTS //
module.exports = dnanvariancewd;