81 lines
1.9 KiB
JavaScript
81 lines
1.9 KiB
JavaScript
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2018 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
'use strict';
|
|||
|
|
|||
|
// MODULES //
|
|||
|
|
|||
|
var hin = require( './hin.js' );
|
|||
|
|
|||
|
|
|||
|
// MAIN //
|
|||
|
|
|||
|
/**
|
|||
|
* Returns a pseudorandom number drawn from a hypergeometric distribution.
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Kachitvichyanukul, Voratas., and Burce Schmeiser. 1985. "Computer generation of hypergeometric random variates." _Journal of Statistical Computation and Simulation_ 22 (2): 127–45. doi:[10.1080/00949658508810839][@kachitvichyanukul:1985].
|
|||
|
*
|
|||
|
* [@kachitvichyanukul:1985]: http://dx.doi.org/10.1080/00949658508810839
|
|||
|
*
|
|||
|
*
|
|||
|
* @private
|
|||
|
* @param {PRNG} rand - PRNG for uniformly distributed numbers
|
|||
|
* @param {NonNegativeInteger} N - population size
|
|||
|
* @param {NonNegativeInteger} K - subpopulation size
|
|||
|
* @param {NonNegativeInteger} n - number of draws
|
|||
|
* @returns {NonNegativeInteger} pseudorandom number
|
|||
|
*/
|
|||
|
function hypergeometric( rand, N, K, n ) {
|
|||
|
var n1;
|
|||
|
var n2;
|
|||
|
var k;
|
|||
|
var x;
|
|||
|
|
|||
|
if ( n > N/2 ) {
|
|||
|
k = N - n;
|
|||
|
if ( 2*K <= N ) {
|
|||
|
n1 = K;
|
|||
|
n2 = N - K;
|
|||
|
x = hin( rand, n1, n2, k );
|
|||
|
return K - x;
|
|||
|
}
|
|||
|
n2 = K;
|
|||
|
n1 = N - K;
|
|||
|
x = hin( rand, n1, n2, k );
|
|||
|
return n - N + K + x;
|
|||
|
}
|
|||
|
k = n;
|
|||
|
if ( 2*K <= N ) {
|
|||
|
n1 = K;
|
|||
|
n2 = N - K;
|
|||
|
x = hin( rand, n1, n2, k );
|
|||
|
return x;
|
|||
|
}
|
|||
|
n1 = N - K;
|
|||
|
n2 = K;
|
|||
|
x = hin( rand, n1, n2, k );
|
|||
|
return n - x;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// EXPORTS //
|
|||
|
|
|||
|
module.exports = hypergeometric;
|