120 lines
3.1 KiB
Markdown
120 lines
3.1 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# fresnel
|
||
|
|
||
|
> Compute the [Fresnel integrals][fresnel-integral] S(x) and C(x).
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [Fresnel integrals][fresnel-integral] are defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:fresnel_integrals" align="center" raw="\begin{align} S(x) &= \int_0^x \sin\left(\frac{\pi}{2} t^2\right)\,\mathrm{d}t, \\ C(x) &= \int_0^x \cos\left(\frac{\pi}{2} t^2\right)\,\mathrm{d}t. \end{align}" alt="Fresnel integral"> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\begin{align} S(x) &= \int_0^x \sin\left(\frac{\pi}{2} t^2\right)\,\mathrm{d}t, \\ C(x) &= \int_0^x \cos\left(\frac{\pi}{2} t^2\right)\,\mathrm{d}t. \end{align}" data-equation="eq:fresnel_integrals">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/math/base/special/fresnel/docs/img/equation_fresnel_integrals.svg" alt="Fresnel integral">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
Some sources define the Fresnel integrals using t<sup>2</sup> for the argument of the sine and cosine. To get these functions, multiply the computed integrals by `√(π/2)` and multiply the argument `x` by `√(2/π)`.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var fresnel = require( '@stdlib/math/base/special/fresnel' );
|
||
|
```
|
||
|
|
||
|
#### fresnel( \[out,] x )
|
||
|
|
||
|
Simultaneously computes the [Fresnel integrals][fresnel-integral] S(x) and C(x).
|
||
|
|
||
|
```javascript
|
||
|
var v = fresnel( 0.0 );
|
||
|
// returns [ ~0.0, ~0.0 ]
|
||
|
|
||
|
v = fresnel( 1.0 );
|
||
|
// returns [ ~0.438, ~0.780 ]
|
||
|
|
||
|
v = fresnel( Infinity );
|
||
|
// returns [ ~0.5, ~0.5 ]
|
||
|
|
||
|
v = fresnel( -Infinity );
|
||
|
// returns [ ~-0.5, ~-0.5 ]
|
||
|
|
||
|
v = fresnel( NaN );
|
||
|
// returns [ NaN, NaN ]
|
||
|
```
|
||
|
|
||
|
By default, the function returns the S(x) and C(x) as a two-element `array`. To avoid extra memory allocation, the function supports providing an output (destination) object.
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
|
||
|
var out = new Float64Array( 2 );
|
||
|
|
||
|
var v = fresnel( out, 0.0 );
|
||
|
// returns <Float64Array>[ ~0.0, ~0.0 ]
|
||
|
|
||
|
var bool = ( v === out );
|
||
|
// returns true
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var linspace = require( '@stdlib/array/linspace' );
|
||
|
var fresnel = require( '@stdlib/math/base/special/fresnel' );
|
||
|
|
||
|
var x = linspace( 0.0, 10.0, 100 );
|
||
|
var i;
|
||
|
|
||
|
for ( i = 0; i < x.length; i++ ) {
|
||
|
console.log( fresnel( x[ i ] ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[fresnel-integral]: https://en.wikipedia.org/wiki/Fresnel_integral
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|