209 lines
6.2 KiB
Markdown
209 lines
6.2 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2020 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# scusumpw
|
|||
|
|
|||
|
> Calculate the cumulative sum of single-precision floating-point strided array elements using pairwise summation.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var scusumpw = require( '@stdlib/blas/ext/base/scusumpw' );
|
|||
|
```
|
|||
|
|
|||
|
#### scusumpw( N, sum, x, strideX, y, strideY )
|
|||
|
|
|||
|
Computes the cumulative sum of single-precision floating-point strided array elements using pairwise summation.
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
|
|||
|
var y = new Float32Array( x.length );
|
|||
|
|
|||
|
scusumpw( x.length, 0.0, x, 1, y, 1 );
|
|||
|
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]
|
|||
|
|
|||
|
x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
|
|||
|
y = new Float32Array( x.length );
|
|||
|
|
|||
|
scusumpw( x.length, 10.0, x, 1, y, 1 );
|
|||
|
// y => <Float32Array>[ 11.0, 9.0, 11.0 ]
|
|||
|
```
|
|||
|
|
|||
|
The function has the following parameters:
|
|||
|
|
|||
|
- **N**: number of indexed elements.
|
|||
|
- **sum**: initial sum.
|
|||
|
- **x**: input [`Float32Array`][@stdlib/array/float32].
|
|||
|
- **strideX**: index increment for `x`.
|
|||
|
- **y**: output [`Float32Array`][@stdlib/array/float32].
|
|||
|
- **strideY**: index increment for `y`.
|
|||
|
|
|||
|
The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. For example, to compute the cumulative sum of every other element in `x`,
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
|
|||
|
var y = new Float32Array( x.length );
|
|||
|
|
|||
|
var N = floor( x.length / 2 );
|
|||
|
|
|||
|
var v = scusumpw( N, 0.0, x, 2, y, 1 );
|
|||
|
// y => <Float32Array>[ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]
|
|||
|
```
|
|||
|
|
|||
|
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
|
|||
|
|
|||
|
<!-- eslint-disable stdlib/capitalized-comments -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
// Initial arrays...
|
|||
|
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
|
|||
|
var y0 = new Float32Array( x0.length );
|
|||
|
|
|||
|
// Create offset views...
|
|||
|
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
|
|||
|
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
|
|||
|
|
|||
|
var N = floor( x0.length / 2 );
|
|||
|
|
|||
|
scusumpw( N, 0.0, x1, -2, y1, 1 );
|
|||
|
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]
|
|||
|
```
|
|||
|
|
|||
|
#### scusumpw.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )
|
|||
|
|
|||
|
Computes the cumulative sum of single-precision floating-point strided array elements using pairwise summation and alternative indexing semantics.
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 1.0, -2.0, 2.0 ] );
|
|||
|
var y = new Float32Array( x.length );
|
|||
|
|
|||
|
scusumpw.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
|
|||
|
// y => <Float32Array>[ 1.0, -1.0, 1.0 ]
|
|||
|
```
|
|||
|
|
|||
|
The function has the following additional parameters:
|
|||
|
|
|||
|
- **offsetX**: starting index for `x`.
|
|||
|
- **offsetY**: starting index for `y`.
|
|||
|
|
|||
|
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, `offsetX` and `offsetY` parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in `x` starting from the second value and to store in the last `N` elements of `y` starting from the last element
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
|
|||
|
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
|
|||
|
var y = new Float32Array( x.length );
|
|||
|
|
|||
|
var N = floor( x.length / 2 );
|
|||
|
|
|||
|
scusumpw.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
|
|||
|
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="notes">
|
|||
|
|
|||
|
## Notes
|
|||
|
|
|||
|
- If `N <= 0`, both functions return `y` unchanged.
|
|||
|
- In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.notes -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var randu = require( '@stdlib/random/base/randu' );
|
|||
|
var round = require( '@stdlib/math/base/special/round' );
|
|||
|
var Float32Array = require( '@stdlib/array/float32' );
|
|||
|
var scusumpw = require( '@stdlib/blas/ext/base/scusumpw' );
|
|||
|
|
|||
|
var y;
|
|||
|
var x;
|
|||
|
var i;
|
|||
|
|
|||
|
x = new Float32Array( 10 );
|
|||
|
y = new Float32Array( x.length );
|
|||
|
for ( i = 0; i < x.length; i++ ) {
|
|||
|
x[ i ] = round( randu()*100.0 );
|
|||
|
}
|
|||
|
console.log( x );
|
|||
|
console.log( y );
|
|||
|
|
|||
|
scusumpw( x.length, 0.0, x, 1, y, -1 );
|
|||
|
console.log( y );
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
* * *
|
|||
|
|
|||
|
<section class="references">
|
|||
|
|
|||
|
## References
|
|||
|
|
|||
|
- Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050][@higham:1993a].
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.references -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32
|
|||
|
|
|||
|
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
|
|||
|
|
|||
|
[@higham:1993a]: https://doi.org/10.1137/0914050
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|