time-to-botec/squiggle/node_modules/@stdlib/stats/base/dmeanvarpn/lib/dmeanvarpn.js

126 lines
3.3 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var dsumpw = require( '@stdlib/blas/ext/base/dsumpw' );
// MAIN //
/**
* Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param {PositiveInteger} N - number of indexed elements
* @param {number} correction - degrees of freedom adjustment
* @param {Float64Array} x - input array
* @param {integer} strideX - `x` stride length
* @param {Float64Array} out - output array
* @param {integer} strideOut - `out` stride length
* @returns {Float64Array} output array
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
*
* var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
* var out = new Float64Array( 2 );
*
* var v = dmeanvarpn( x.length, 1, x, 1, out, 1 );
* // returns <Float64Array>[ ~0.3333, ~4.3333 ]
*/
function dmeanvarpn( N, correction, x, strideX, out, strideOut ) {
var mu;
var ix;
var io;
var M2;
var M;
var d;
var c;
var n;
var i;
if ( strideX < 0 ) {
ix = (1-N) * strideX;
} else {
ix = 0;
}
if ( strideOut < 0 ) {
io = -strideOut;
} else {
io = 0;
}
if ( N <= 0 ) {
out[ io ] = NaN;
out[ io+strideOut ] = NaN;
return out;
}
n = N - correction;
if ( N === 1 || strideX === 0 ) {
out[ io ] = x[ ix ];
if ( n <= 0.0 ) {
out[ io+strideOut ] = NaN;
} else {
out[ io+strideOut ] = 0.0;
}
return out;
}
// Compute an estimate for the mean:
mu = dsumpw( N, x, strideX ) / N;
if ( isnan( mu ) ) {
out[ io ] = NaN;
out[ io+strideOut ] = NaN;
return out;
}
// Compute the sum of squared differences from the mean...
M2 = 0.0;
M = 0.0;
for ( i = 0; i < N; i++ ) {
d = x[ ix ] - mu;
M2 += d * d;
M += d;
ix += strideX;
}
// Compute an error term for the mean:
c = M / N;
out[ io ] = mu + c;
if ( n <= 0.0 ) {
out[ io+strideOut ] = NaN;
} else {
out[ io+strideOut ] = (M2/n) - (c*(M/n));
}
return out;
}
// EXPORTS //
module.exports = dmeanvarpn;