114 lines
2.6 KiB
Markdown
114 lines
2.6 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2018 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# Riemann Zeta Function
|
|||
|
|
|||
|
> [Riemann zeta][zeta-function] function.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
The [Riemann zeta][zeta-function] function is the [analytic continuation][analytic-continuation] of the infinite series
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:riemann_zeta_function" align="center" raw="\zeta(s) =\sum_{k=1}^\infty\frac{1}{k^s}" alt="Riemann zeta function"> -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="\zeta(s) =\sum_{k=1}^\infty\frac{1}{k^s}" data-equation="eq:riemann_zeta_function">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/riemann-zeta/docs/img/equation_riemann_zeta_function.svg" alt="Riemann zeta function">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
where `s` is a complex variable equal to `σ + ti`. The series is only convergent when the real part of `s`, `σ`, is greater than `1`.
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var zeta = require( '@stdlib/math/base/special/riemann-zeta' );
|
|||
|
```
|
|||
|
|
|||
|
#### zeta( s )
|
|||
|
|
|||
|
Evaluates the [Riemann zeta][zeta-function] function as a function of a real variable `s` (i.e., `t = 0`).
|
|||
|
|
|||
|
```javascript
|
|||
|
var v = zeta( 1.1 );
|
|||
|
// returns ~10.584
|
|||
|
|
|||
|
v = zeta( -4.0 );
|
|||
|
// returns 0.0
|
|||
|
|
|||
|
v = zeta( 70.0 );
|
|||
|
// returns 1.0
|
|||
|
|
|||
|
v = zeta( 0.5 );
|
|||
|
// returns ~-1.46
|
|||
|
|
|||
|
v = zeta( 1.0 ); // pole
|
|||
|
// returns NaN
|
|||
|
|
|||
|
v = zeta( NaN );
|
|||
|
// returns NaN
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var linspace = require( '@stdlib/array/linspace' );
|
|||
|
var zeta = require( '@stdlib/math/base/special/riemann-zeta' );
|
|||
|
|
|||
|
var s;
|
|||
|
var v;
|
|||
|
var i;
|
|||
|
|
|||
|
s = linspace( -50.0, 50.0, 200 );
|
|||
|
for ( i = 0; i < s.length; i++ ) {
|
|||
|
v = zeta( s[ i ] );
|
|||
|
console.log( 's: %d, ζ(s): %d', s[ i ], v );
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[zeta-function]: https://en.wikipedia.org/wiki/Riemann_zeta_function
|
|||
|
|
|||
|
[analytic-continuation]: https://en.wikipedia.org/wiki/Analytic_continuation
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|