117 lines
3.0 KiB
Markdown
117 lines
3.0 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# beta
|
||
|
|
||
|
> [Beta function][beta-function].
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [beta function][beta-function], also called the Euler integral, is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:beta_function" align="center" raw="\operatorname{Beta}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,\mathrm{d}t" alt="Equation for the beta function."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{Beta}(x,y) = \int_0^1t^{x-1}(1-t)^{y-1}\,\mathrm{d}t" data-equation="eq:beta_function">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/beta/docs/img/equation_beta_function.svg" alt="Equation for the beta function.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
The [beta function][beta-function] is related to the [Gamma function][gamma-function] via the following equation
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:beta_function2" align="center" raw="\operatorname{Beta}(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)} \!" alt="Beta function expressed in terms of the Gamma function."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\operatorname{Beta}(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)} \!" data-equation="eq:beta_function2">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/beta/docs/img/equation_beta_function2.svg" alt="Beta function expressed in terms of the Gamma function.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var beta = require( '@stdlib/math/base/special/beta' );
|
||
|
```
|
||
|
|
||
|
#### beta( x, y )
|
||
|
|
||
|
Evaluates the [beta function][beta-function].
|
||
|
|
||
|
```javascript
|
||
|
var val = beta( 0.0, 0.5 );
|
||
|
// returns Infinity
|
||
|
|
||
|
val = beta( 1.0, 1.0 );
|
||
|
// returns 1.0
|
||
|
|
||
|
val = beta( -1.0, 2.0 );
|
||
|
// returns NaN
|
||
|
|
||
|
val = beta( 5.0, 0.2 );
|
||
|
// returns ~3.382
|
||
|
|
||
|
val = beta( 4.0, 1.0 );
|
||
|
// returns 0.25
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var beta = require( '@stdlib/math/base/special/beta' );
|
||
|
var x;
|
||
|
var y;
|
||
|
|
||
|
for ( x = 0; x < 10; x++ ) {
|
||
|
for ( y = 10; y > 0; y-- ) {
|
||
|
console.log( 'x: %d, \t y: %d, \t f(x,y): %d', x, y, beta( x, y ) );
|
||
|
}
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[beta-function]: http://en.wikipedia.org/wiki/Beta_function
|
||
|
|
||
|
[gamma-function]: https://en.wikipedia.org/wiki/Gamma_function
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|