time-to-botec/js/node_modules/@stdlib/blas/ext/base/gnansumpw/README.md

190 lines
5.3 KiB
Markdown
Raw Normal View History

<!--
@license Apache-2.0
Copyright (c) 2020 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# gnansumpw
> Calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.
<section class="intro">
</section>
<!-- /.intro -->
<section class="usage">
## Usage
```javascript
var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );
```
#### gnansumpw( N, x, stride )
Computes the sum of strided array elements, ignoring `NaN` values and using pairwise summation.
```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumpw( N, x, 1 );
// returns 1.0
```
The function has the following parameters:
- **N**: number of indexed elements.
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
- **stride**: index increment for `x`.
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the sum of every other element in `x`,
```javascript
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumpw( N, x, 2 );
// returns 5.0
```
Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.
<!-- eslint-disable stdlib/capitalized-comments -->
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = gnansumpw( N, x1, 2 );
// returns 5.0
```
#### gnansumpw.ndarray( N, x, stride, offset )
Computes the sum of strided array elements, ignoring `NaN` values and using pairwise summation and alternative indexing semantics.
```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;
var v = gnansumpw.ndarray( N, x, 1, 0 );
// returns 1.0
```
The function has the following additional parameters:
- **offset**: starting index for `x`.
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
```javascript
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
var N = floor( x.length / 2 );
var v = gnansumpw.ndarray( N, x, 2, 1 );
// returns 5.0
```
</section>
<!-- /.usage -->
<section class="notes">
## Notes
- If `N <= 0`, both functions return `0.0`.
- In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the KahanBabuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
- Depending on the environment, the typed versions ([`dnansumpw`][@stdlib/blas/ext/base/dnansumpw], [`snansumpw`][@stdlib/blas/ext/base/snansumpw], etc.) are likely to be significantly more performant.
</section>
<!-- /.notes -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var gnansumpw = require( '@stdlib/blas/ext/base/gnansumpw' );
var x;
var i;
x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( randu()*100.0 );
}
}
console.log( x );
var v = gnansumpw( x.length, x, 1 );
console.log( v );
```
</section>
<!-- /.examples -->
* * *
<section class="references">
## References
- Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 78399. doi:[10.1137/0914050][@higham:1993a].
</section>
<!-- /.references -->
<section class="links">
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
[@stdlib/blas/ext/base/dnansumpw]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/dnansumpw
[@stdlib/blas/ext/base/snansumpw]: https://www.npmjs.com/package/@stdlib/blas/tree/main/ext/base/snansumpw
[@higham:1993a]: https://doi.org/10.1137/0914050
</section>
<!-- /.links -->