time-to-botec/js/node_modules/@stdlib/stats/incr/cv/lib/main.js

161 lines
4.2 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var sqrt = require( '@stdlib/math/base/special/sqrt' );
// MAIN //
/**
* Returns an accumulator function which incrementally computes the coefficient of variation (CV).
*
* ## Method
*
* - This implementation uses [Welford's method][algorithms-variance] for efficient computation, which can be derived as follows. Let
*
* ```tex
* \begin{align*}
* S_n &= n \sigma_n^2 \\
* &= \sum_{i=1}^{n} (x_i - \mu_n)^2 \\
* &= \biggl(\sum_{i=1}^{n} x_i^2 \biggr) - n\mu_n^2
* \end{align*}
* ```
*
* Accordingly,
*
* ```tex
* \begin{align*}
* S_n - S_{n-1} &= \sum_{i=1}^{n} x_i^2 - n\mu_n^2 - \sum_{i=1}^{n-1} x_i^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - n\mu_n^2 + (n-1)\mu_{n-1}^2 \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1}^2 - \mu_n^2) \\
* &= x_n^2 - \mu_{n-1}^2 + n(\mu_{n-1} - \mu_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + (\mu_{n-1} - x_n)(\mu_{n-1} + \mu_n) \\
* &= x_n^2 - \mu_{n-1}^2 + \mu_{n-1}^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= x_n^2 - x_n\mu_n - x_n\mu_{n-1} + \mu_n\mu_{n-1} \\
* &= (x_n - \mu_{n-1})(x_n - \mu_n) \\
* &= S_{n-1} + (x_n - \mu_{n-1})(x_n - \mu_n)
* \end{align*}
* ```
*
* where we use the identity
*
* ```tex
* x_n - \mu_{n-1} = n (\mu_n - \mu_{n-1})
* ```
*
* [algorithms-variance]: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*
* @param {number} [mean] - mean value
* @throws {TypeError} must provide a number primitive
* @returns {Function} accumulator function
*
* @example
* var accumulator = incrcv();
*
* var cv = accumulator();
* // returns null
*
* cv = accumulator( 2.0 );
* // returns 0.0
*
* cv = accumulator( 1.0 );
* // returns ~0.47
*
* cv = accumulator();
* // returns ~0.47
*
* @example
* var accumulator = incrcv( 3.14 );
*/
function incrcv( mean ) {
var delta;
var mu;
var M2;
var N;
M2 = 0.0;
N = 0;
if ( arguments.length ) {
if ( !isNumber( mean ) ) {
throw new TypeError( 'invalid argument. Must provide a number primitive. Value: `' + mean + '`.' );
}
mu = mean;
return accumulator2;
}
mu = 0.0;
return accumulator1;
/**
* If provided a value, the accumulator function returns an updated accumulated value. If not provided a value, the accumulator function returns the current accumulated value.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} accumulated value or null
*/
function accumulator1( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
if ( N === 1 ) {
return ( isnan( M2 ) ) ? NaN : 0.0/mu;
}
return sqrt( M2/(N-1) ) / mu;
}
N += 1;
delta = x - mu;
mu += delta / N;
M2 += delta * ( x - mu );
if ( N < 2 ) {
return ( isnan( M2 ) ) ? NaN : 0.0/mu;
}
return sqrt( M2/(N-1) ) / mu;
}
/**
* If provided a value, the accumulator function returns an updated accumulated value. If not provided a value, the accumulator function returns the current accumulated value.
*
* @private
* @param {number} [x] - new value
* @returns {(number|null)} accumulated value or null
*/
function accumulator2( x ) {
if ( arguments.length === 0 ) {
if ( N === 0 ) {
return null;
}
return sqrt( M2/N ) / mu;
}
N += 1;
delta = x - mu;
M2 += delta * delta;
return sqrt( M2/N ) / mu;
}
}
// EXPORTS //
module.exports = incrcv;