197 lines
5.7 KiB
Markdown
197 lines
5.7 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2020 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# nanmskrange
|
||
|
|
||
|
> Calculate the [range][range] of a strided array according to a mask, ignoring `NaN` values.
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [**range**][range] is defined as the difference between the maximum and minimum values.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var nanmskrange = require( '@stdlib/stats/base/nanmskrange' );
|
||
|
```
|
||
|
|
||
|
#### nanmskrange( N, x, strideX, mask, strideMask )
|
||
|
|
||
|
Computes the [range][range] of a strided array `x` according to a `mask`, ignoring `NaN` values.
|
||
|
|
||
|
```javascript
|
||
|
var x = [ 1.0, -2.0, 4.0, 2.0, NaN ];
|
||
|
var mask = [ 0, 0, 1, 0, 0 ];
|
||
|
|
||
|
var v = nanmskrange( x.length, x, 1, mask, 1 );
|
||
|
// returns 4.0
|
||
|
```
|
||
|
|
||
|
The function has the following parameters:
|
||
|
|
||
|
- **N**: number of indexed elements.
|
||
|
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
|
||
|
- **strideX**: index increment for `x`.
|
||
|
- **mask**: mask [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. If a `mask` array element is `0`, the corresponding element in `x` is considered valid and **included** in computation. If a `mask` array element is `1`, the corresponding element in `x` is considered invalid/missing and **excluded** from computation.
|
||
|
- **strideMask**: index increment for `mask`.
|
||
|
|
||
|
The `N` and `stride` parameters determine which elements are accessed at runtime. For example, to compute the [range][range] of every other element in `x`,
|
||
|
|
||
|
```javascript
|
||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
||
|
|
||
|
var x = [ 1.0, 2.0, -7.0, -2.0, 4.0, 3.0, 5.0, 6.0 ];
|
||
|
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
|
||
|
var N = floor( x.length / 2 );
|
||
|
|
||
|
var v = nanmskrange( N, x, 2, mask, 2 );
|
||
|
// returns 11.0
|
||
|
```
|
||
|
|
||
|
Note that indexing is relative to the first index. To introduce offsets, use [`typed array`][mdn-typed-array] views.
|
||
|
|
||
|
<!-- eslint-disable stdlib/capitalized-comments -->
|
||
|
|
||
|
```javascript
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var Uint8Array = require( '@stdlib/array/uint8' );
|
||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
||
|
|
||
|
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] );
|
||
|
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
|
||
|
|
||
|
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
|
||
|
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
|
||
|
|
||
|
var N = floor( x0.length / 2 );
|
||
|
|
||
|
var v = nanmskrange( N, x1, 2, mask1, 2 );
|
||
|
// returns 6.0
|
||
|
```
|
||
|
|
||
|
#### nanmskrange.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )
|
||
|
|
||
|
Computes the [range][range] of a strided array according to a `mask`, ignoring `NaN` values and using alternative indexing semantics.
|
||
|
|
||
|
```javascript
|
||
|
var x = [ 1.0, -2.0, 4.0, 2.0, NaN ];
|
||
|
var mask = [ 0, 0, 1, 0, 0 ];
|
||
|
|
||
|
var v = nanmskrange.ndarray( x.length, x, 1, 0, mask, 1, 0 );
|
||
|
// returns 4.0
|
||
|
```
|
||
|
|
||
|
The function has the following additional parameters:
|
||
|
|
||
|
- **offsetX**: starting index for `x`.
|
||
|
- **offsetMask**: starting index for `mask`.
|
||
|
|
||
|
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [range][range] for every other value in `x` starting from the second value
|
||
|
|
||
|
```javascript
|
||
|
var floor = require( '@stdlib/math/base/special/floor' );
|
||
|
|
||
|
var x = [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ];
|
||
|
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
|
||
|
var N = floor( x.length / 2 );
|
||
|
|
||
|
var v = nanmskrange.ndarray( N, x, 2, 1, mask, 2, 1 );
|
||
|
// returns 6.0
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- If `N <= 0`, both functions return `NaN`.
|
||
|
- Depending on the environment, the typed versions ([`dnanmskrange`][@stdlib/stats/base/dnanmskrange], [`snanmskrange`][@stdlib/stats/base/snanmskrange], etc.) are likely to be significantly more performant.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var round = require( '@stdlib/math/base/special/round' );
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var Uint8Array = require( '@stdlib/array/uint8' );
|
||
|
var nanmskrange = require( '@stdlib/stats/base/nanmskrange' );
|
||
|
|
||
|
var mask;
|
||
|
var x;
|
||
|
var i;
|
||
|
|
||
|
x = new Float64Array( 10 );
|
||
|
mask = new Uint8Array( x.length );
|
||
|
for ( i = 0; i < x.length; i++ ) {
|
||
|
if ( randu() < 0.2 ) {
|
||
|
mask[ i ] = 1;
|
||
|
} else {
|
||
|
mask[ i ] = 0;
|
||
|
}
|
||
|
if ( randu() < 0.1 ) {
|
||
|
x[ i ] = NaN;
|
||
|
} else {
|
||
|
x[ i ] = round( (randu()*100.0) - 50.0 );
|
||
|
}
|
||
|
}
|
||
|
console.log( x );
|
||
|
console.log( mask );
|
||
|
|
||
|
var v = nanmskrange( x.length, x, 1, mask, 1 );
|
||
|
console.log( v );
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[range]: https://en.wikipedia.org/wiki/Range_%28statistics%29
|
||
|
|
||
|
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
|
||
|
|
||
|
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
|
||
|
|
||
|
[@stdlib/stats/base/dnanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/dnanmskrange
|
||
|
|
||
|
[@stdlib/stats/base/snanmskrange]: https://www.npmjs.com/package/@stdlib/stats/tree/main/base/snanmskrange
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|