time-to-botec/js/node_modules/@stdlib/stats/base/dnanmskmin/README.md

200 lines
5.8 KiB
Markdown
Raw Normal View History

<!--
@license Apache-2.0
Copyright (c) 2020 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# dnanmskmin
> Calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values.
<section class="intro">
</section>
<!-- /.intro -->
<section class="usage">
## Usage
```javascript
var dnanmskmin = require( '@stdlib/stats/base/dnanmskmin' );
```
#### dnanmskmin( N, x, strideX, mask, strideMask )
Computes the minimum value of a double-precision floating-point strided array `x` according to a `mask`, ignoring `NaN` values.
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0, NaN ] );
var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] );
var v = dnanmskmin( x.length, x, 1, mask, 1 );
// returns -2.0
```
The function has the following parameters:
- **N**: number of indexed elements.
- **x**: input [`Float64Array`][@stdlib/array/float64].
- **strideX**: index increment for `x`.
- **mask**: mask [`Uint8Array`][@stdlib/array/uint8]. If a `mask` array element is `0`, the corresponding element in `x` is considered valid and **included** in computation. If a `mask` array element is `1`, the corresponding element in `x` is considered invalid/missing and **excluded** from computation.
- **strideMask**: index increment for `mask`.
The `N` and `stride` parameters determine which elements are accessed at runtime. For example, to compute the minimum value of every other element in `x`,
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 1.0, 2.0, 7.0, -2.0, -4.0, 3.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var N = floor( x.length / 2 );
var v = dnanmskmin( N, x, 2, mask, 2 );
// returns -4.0
```
Note that indexing is relative to the first index. To introduce offsets, use [`typed array`][mdn-typed-array] views.
<!-- eslint-disable stdlib/capitalized-comments -->
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dnanmskmin( N, x1, 2, mask1, 2 );
// returns -2.0
```
#### dnanmskmin.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )
Computes the minimum value of a double-precision floating-point strided array according to a `mask`, ignoring `NaN` values and using alternative indexing semantics.
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var x = new Float64Array( [ 1.0, -2.0, -4.0, 2.0, NaN ] );
var mask = new Uint8Array( [ 0, 0, 1, 0, 0 ] );
var v = dnanmskmin.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns -2.0
```
The function has the following additional parameters:
- **offsetX**: starting index for `x`.
- **offsetMask**: starting index for `mask`.
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the minimum value for every other value in `x` starting from the second value
```javascript
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var floor = require( '@stdlib/math/base/special/floor' );
var x = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, -5.0, -6.0 ] );
var mask = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var N = floor( x.length / 2 );
var v = dnanmskmin.ndarray( N, x, 2, 1, mask, 2, 1 );
// returns -2.0
```
</section>
<!-- /.usage -->
<section class="notes">
## Notes
- If `N <= 0`, both functions return `NaN`.
</section>
<!-- /.notes -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var Uint8Array = require( '@stdlib/array/uint8' );
var dnanmskmin = require( '@stdlib/stats/base/dnanmskmin' );
var mask;
var x;
var i;
x = new Float64Array( 10 );
mask = new Uint8Array( x.length );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
mask[ i ] = 1;
} else {
mask[ i ] = 0;
}
if ( randu() < 0.1 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
}
console.log( x );
console.log( mask );
var v = dnanmskmin( x.length, x, 1, mask, 1 );
console.log( v );
```
</section>
<!-- /.examples -->
<section class="links">
[@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
[@stdlib/array/uint8]: https://www.npmjs.com/package/@stdlib/array-uint8
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
</section>
<!-- /.links -->