time-to-botec/squiggle/node_modules/@stdlib/stats/base/smeanpn/src/smeanpn.c

62 lines
2.2 KiB
C
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdlib/stats/base/smeanpn.h"
#include "stdlib/blas/ext/base/ssumpw.h"
#include "stdlib/blas/ext/base/sapxsumpw.h"
#include <stdint.h>
/**
* Computes the arithmetic mean of a single-precision floating-point strided array using a two-pass error correction algorithm.
*
* ## Method
*
* - This implementation uses a two-pass approach, as suggested by Neely (1966).
*
* ## References
*
* - Neely, Peter M. 1966. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients." _Communications of the ACM_ 9 (7). Association for Computing Machinery: 49699. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).
* - Schubert, Erich, and Michael Gertz. 2018. "Numerically Stable Parallel Computation of (Co-)Variance." In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).
*
* @param N number of indexed elements
* @param X input array
* @param stride stride length
* @return output value
*/
float stdlib_strided_smeanpn( const int64_t N, const float *X, const int64_t stride ) {
double dN;
float mu;
float c;
if ( N <= 0 ) {
return 0.0 / 0.0; // NaN
}
if ( N == 1 || stride == 0 ) {
return X[ 0 ];
}
dN = (double)N;
// Compute an estimate for the mean:
mu = (double)stdlib_strided_ssumpw( N, X, stride ) / dN;
// Compute an error term:
c = (double)stdlib_strided_sapxsumpw( N, -mu, X, stride ) / dN;
return mu + c;
}