141 lines
3.5 KiB
Plaintext
141 lines
3.5 KiB
Plaintext
|
|
||
|
{{alias}}( x, sigma[, options] )
|
||
|
Computes a one-sample z-test.
|
||
|
|
||
|
The function performs a one-sample z-test for the null hypothesis that the
|
||
|
data in array or typed array `x` is drawn from a normal distribution with
|
||
|
mean zero and standard deviation `sigma`.
|
||
|
|
||
|
The returned object comes with a `.print()` method which when invoked will
|
||
|
print a formatted output of the results of the hypothesis test.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x: Array<number>
|
||
|
Data array.
|
||
|
|
||
|
sigma: number
|
||
|
Known standard deviation.
|
||
|
|
||
|
options: Object (optional)
|
||
|
Options.
|
||
|
|
||
|
options.alpha: number (optional)
|
||
|
Number in the interval `[0,1]` giving the significance level of the
|
||
|
hypothesis test. Default: `0.05`.
|
||
|
|
||
|
options.alternative: string (optional)
|
||
|
Indicates whether the alternative hypothesis is that the mean of `x` is
|
||
|
larger than `mu` (`greater`), smaller than `mu` (`less`) or equal to
|
||
|
`mu` (`two-sided`). Default: `'two-sided'`.
|
||
|
|
||
|
options.mu: number (optional)
|
||
|
Hypothesized true mean under the null hypothesis. Set this option to
|
||
|
test whether the data comes from a distribution with the specified `mu`.
|
||
|
Default: `0`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out: Object
|
||
|
Test result object.
|
||
|
|
||
|
out.alpha: number
|
||
|
Used significance level.
|
||
|
|
||
|
out.rejected: boolean
|
||
|
Test decision.
|
||
|
|
||
|
out.pValue: number
|
||
|
p-value of the test.
|
||
|
|
||
|
out.statistic: number
|
||
|
Value of test statistic.
|
||
|
|
||
|
out.ci: Array<number>
|
||
|
1-alpha confidence interval for mean.
|
||
|
|
||
|
out.nullValue: number
|
||
|
Assumed mean value under H0.
|
||
|
|
||
|
out.sd: number
|
||
|
Standard error.
|
||
|
|
||
|
out.alternative: string
|
||
|
Alternative hypothesis (`two-sided`, `less` or `greater`).
|
||
|
|
||
|
out.method: string
|
||
|
Name of test (`One-Sample z-test`).
|
||
|
|
||
|
out.print: Function
|
||
|
Function to print formatted output.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
// One-sample z-test:
|
||
|
> var rnorm = {{alias:@stdlib/random/base/normal}}.factory( 0.0, 2.0, { 'seed': 212 });
|
||
|
> var x = new Array( 100 );
|
||
|
> for ( var i = 0; i < x.length; i++ ) {
|
||
|
... x[ i ] = rnorm();
|
||
|
... }
|
||
|
> var out = {{alias}}( x, 2.0 )
|
||
|
{
|
||
|
alpha: 0.05,
|
||
|
rejected: false,
|
||
|
pValue: ~0.180,
|
||
|
statistic: ~-1.34,
|
||
|
ci: [ ~-0.66, ~0.124 ],
|
||
|
...
|
||
|
}
|
||
|
|
||
|
// Choose custom significance level and print output:
|
||
|
> arr = [ 2, 4, 3, 1, 0 ];
|
||
|
> out = {{alias}}( arr, 2.0, { 'alpha': 0.01 });
|
||
|
> table = out.print()
|
||
|
One-sample z-test
|
||
|
|
||
|
Alternative hypothesis: True mean is not equal to 0
|
||
|
|
||
|
pValue: 0.0253
|
||
|
statistic: 2.2361
|
||
|
99% confidence interval: [-0.3039,4.3039]
|
||
|
|
||
|
Test Decision: Fail to reject null in favor of alternative at 1%
|
||
|
significance level
|
||
|
|
||
|
|
||
|
// Test for a mean equal to five:
|
||
|
> var arr = [ 4, 4, 6, 6, 5 ];
|
||
|
> out = {{alias}}( arr, 1.0, { 'mu': 5 })
|
||
|
{
|
||
|
rejected: false,
|
||
|
pValue: 1,
|
||
|
statistic: 0,
|
||
|
ci: [ ~4.123, ~5.877 ],
|
||
|
// ...
|
||
|
}
|
||
|
|
||
|
// Perform one-sided tests:
|
||
|
> arr = [ 4, 4, 6, 6, 5 ];
|
||
|
> out = {{alias}}( arr, 1.0, { 'alternative': 'less' })
|
||
|
{
|
||
|
alpha: 0.05,
|
||
|
rejected: false,
|
||
|
pValue: 1,
|
||
|
statistic: 11.180339887498949,
|
||
|
ci: [ -Infinity, 5.735600904580115 ],
|
||
|
// ...
|
||
|
}
|
||
|
> out = {{alias}}( arr, 1.0, { 'alternative': 'greater' })
|
||
|
{
|
||
|
alpha: 0.05,
|
||
|
rejected: true,
|
||
|
pValue: 0,
|
||
|
statistic: 11.180339887498949,
|
||
|
ci: [ 4.264399095419885, Infinity ],
|
||
|
//...
|
||
|
}
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
|