time-to-botec/js/node_modules/@stdlib/stats/incr/covariance/README.md

147 lines
4.5 KiB
Markdown
Raw Normal View History

<!--
@license Apache-2.0
Copyright (c) 2018 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# incrcovariance
> Compute an [unbiased sample covariance][covariance] incrementally.
<section class="intro">
For unknown population means, the [unbiased sample covariance][covariance] is defined as
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_unknown_means" align="center" raw="\operatorname{cov_n} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n)" alt="Equation for the unbiased sample covariance for unknown population means."> -->
<div class="equation" align="center" data-raw-text="\operatorname{cov_n} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n)" data-equation="eq:unbiased_sample_covariance_unknown_means">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/covariance/docs/img/equation_unbiased_sample_covariance_unknown_means.svg" alt="Equation for the unbiased sample covariance for unknown population means.">
<br>
</div>
<!-- </equation> -->
For known population means, the [unbiased sample covariance][covariance] is defined as
<!-- <equation class="equation" label="eq:unbiased_sample_covariance_known_means" align="center" raw="\operatorname{cov_n} = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \mu_x)(y_i - \mu_y)" alt="Equation for the unbiased sample covariance for known population means."> -->
<div class="equation" align="center" data-raw-text="\operatorname{cov_n} = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \mu_x)(y_i - \mu_y)" data-equation="eq:unbiased_sample_covariance_known_means">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@27e2a43c70db648bb5bbc3fd0cdee050c25adc0b/lib/node_modules/@stdlib/stats/incr/covariance/docs/img/equation_unbiased_sample_covariance_known_means.svg" alt="Equation for the unbiased sample covariance for known population means.">
<br>
</div>
<!-- </equation> -->
</section>
<!-- /.intro -->
<section class="usage">
## Usage
```javascript
var incrcovariance = require( '@stdlib/stats/incr/covariance' );
```
#### incrcovariance( \[mx, my] )
Returns an accumulator `function` which incrementally computes an [unbiased sample covariance][covariance].
```javascript
var accumulator = incrcovariance();
```
If the means are already known, provide `mx` and `my` arguments.
```javascript
var accumulator = incrcovariance( 3.0, -5.5 );
```
#### accumulator( \[x, y] )
If provided input values `x` and `y`, the accumulator function returns an updated [unbiased sample covariance][covariance]. If not provided input values `x` and `y`, the accumulator function returns the current [unbiased sample covariance][covariance].
```javascript
var accumulator = incrcovariance();
var v = accumulator( 2.0, 1.0 );
// returns 0.0
v = accumulator( 1.0, -5.0 );
// returns 3.0
v = accumulator( 3.0, 3.14 );
// returns 4.07
v = accumulator();
// returns 4.07
```
</section>
<!-- /.usage -->
<section class="notes">
## Notes
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
</section>
<!-- /.notes -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random/base/randu' );
var incrcovariance = require( '@stdlib/stats/incr/covariance' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrcovariance();
// For each simulated datum, update the unbiased sample covariance...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );
```
</section>
<!-- /.examples -->
<section class="links">
[covariance]: https://en.wikipedia.org/wiki/Covariance
</section>
<!-- /.links -->