60 lines
1.8 KiB
JavaScript
60 lines
1.8 KiB
JavaScript
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2020 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
'use strict';
|
|||
|
|
|||
|
// MODULES //
|
|||
|
|
|||
|
var varianceyc = require( './../../../base/varianceyc' ).ndarray;
|
|||
|
var sqrt = require( '@stdlib/math/base/special/sqrt' );
|
|||
|
|
|||
|
|
|||
|
// MAIN //
|
|||
|
|
|||
|
/**
|
|||
|
* Computes the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).
|
|||
|
*
|
|||
|
* @param {PositiveInteger} N - number of indexed elements
|
|||
|
* @param {number} correction - degrees of freedom adjustment
|
|||
|
* @param {NumericArray} x - input array
|
|||
|
* @param {integer} stride - stride length
|
|||
|
* @param {NonNegativeInteger} offset - starting index
|
|||
|
* @returns {number} standard deviation
|
|||
|
*
|
|||
|
* @example
|
|||
|
* var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
*
|
|||
|
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
|
|||
|
* var N = floor( x.length / 2 );
|
|||
|
*
|
|||
|
* var v = stdevyc( N, 1, x, 2, 1 );
|
|||
|
* // returns 2.5
|
|||
|
*/
|
|||
|
function stdevyc( N, correction, x, stride, offset ) {
|
|||
|
return sqrt( varianceyc( N, correction, x, stride, offset ) );
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// EXPORTS //
|
|||
|
|
|||
|
module.exports = stdevyc;
|