109 lines
2.4 KiB
JavaScript
109 lines
2.4 KiB
JavaScript
|
/**
|
|||
|
* @license Apache-2.0
|
|||
|
*
|
|||
|
* Copyright (c) 2020 The Stdlib Authors.
|
|||
|
*
|
|||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
* you may not use this file except in compliance with the License.
|
|||
|
* You may obtain a copy of the License at
|
|||
|
*
|
|||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
*
|
|||
|
* Unless required by applicable law or agreed to in writing, software
|
|||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
* See the License for the specific language governing permissions and
|
|||
|
* limitations under the License.
|
|||
|
*/
|
|||
|
|
|||
|
'use strict';
|
|||
|
|
|||
|
// MAIN //
|
|||
|
|
|||
|
/**
|
|||
|
* Computes the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.
|
|||
|
*
|
|||
|
* ## Method
|
|||
|
*
|
|||
|
* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).
|
|||
|
*
|
|||
|
* ## References
|
|||
|
*
|
|||
|
* - Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." _Technometrics_ 13 (3): 657–65. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).
|
|||
|
*
|
|||
|
* @param {PositiveInteger} N - number of indexed elements
|
|||
|
* @param {number} correction - degrees of freedom adjustment
|
|||
|
* @param {NumericArray} x - input array
|
|||
|
* @param {integer} stride - stride length
|
|||
|
* @param {NonNegativeInteger} offset - starting index
|
|||
|
* @returns {number} variance
|
|||
|
*
|
|||
|
* @example
|
|||
|
* var floor = require( '@stdlib/math/base/special/floor' );
|
|||
|
*
|
|||
|
* var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];
|
|||
|
* var N = floor( x.length / 2 );
|
|||
|
*
|
|||
|
* var v = nanvarianceyc( N, 1, x, 2, 1 );
|
|||
|
* // returns 6.25
|
|||
|
*/
|
|||
|
function nanvarianceyc( N, correction, x, stride, offset ) {
|
|||
|
var sum;
|
|||
|
var ix;
|
|||
|
var nc;
|
|||
|
var S;
|
|||
|
var v;
|
|||
|
var d;
|
|||
|
var n;
|
|||
|
var i;
|
|||
|
|
|||
|
if ( N <= 0 ) {
|
|||
|
return NaN;
|
|||
|
}
|
|||
|
if ( N === 1 || stride === 0 ) {
|
|||
|
v = x[ offset ];
|
|||
|
if ( v === v && N-correction > 0.0 ) {
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
return NaN;
|
|||
|
}
|
|||
|
ix = offset;
|
|||
|
|
|||
|
// Find the first non-NaN element...
|
|||
|
for ( i = 0; i < N; i++ ) {
|
|||
|
v = x[ ix ];
|
|||
|
if ( v === v ) {
|
|||
|
break;
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
}
|
|||
|
if ( i === N ) {
|
|||
|
return NaN;
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
sum = v;
|
|||
|
S = 0.0;
|
|||
|
i += 1;
|
|||
|
n = 1;
|
|||
|
for ( i; i < N; i++ ) {
|
|||
|
v = x[ ix ];
|
|||
|
if ( v === v ) {
|
|||
|
n += 1;
|
|||
|
sum += v;
|
|||
|
d = (n*v) - sum;
|
|||
|
S += (1.0/(n*(n-1))) * d * d;
|
|||
|
}
|
|||
|
ix += stride;
|
|||
|
}
|
|||
|
nc = n - correction;
|
|||
|
if ( nc <= 0.0 ) {
|
|||
|
return NaN;
|
|||
|
}
|
|||
|
return S / nc;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// EXPORTS //
|
|||
|
|
|||
|
module.exports = nanvarianceyc;
|