time-to-botec/squiggle/node_modules/@stdlib/strided/base/mskunary/lib/main.js

104 lines
2.3 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2020 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MAIN //
/**
* Applies a unary callback to elements in a strided input array according to elements in a strided mask array and assigns results to elements in a strided output array.
*
* @param {ArrayLikeObject<Collection>} arrays - array-like object containing one input array, a mask array, and one output array
* @param {NonNegativeIntegerArray} shape - array-like object containing a single element, the number of indexed elements
* @param {IntegerArray} strides - array-like object containing the stride lengths for the strided arrays
* @param {Callback} fcn - unary callback
* @returns {void}
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var Uint8Array = require( '@stdlib/array/uint8' );
*
* function scale( x ) {
* return x * 10.0;
* }
*
* var x = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0 ] );
* var m = new Uint8Array( [ 0, 0, 1, 0, 0 ] );
* var y = new Float64Array( x.length );
*
* var shape = [ x.length ];
* var strides = [ 1, 1, 1 ];
*
* mskunary( [ x, m, y ], shape, strides, scale );
*
* console.log( y );
* // => <Float64Array>[ 10.0, 20.0, 0.0, 40.0, 50.0 ]
*/
function mskunary( arrays, shape, strides, fcn ) {
var sx;
var sm;
var sy;
var ix;
var im;
var iy;
var x;
var m;
var y;
var N;
var i;
N = shape[ 0 ];
if ( N <= 0 ) {
return;
}
sx = strides[ 0 ];
sm = strides[ 1 ];
sy = strides[ 2 ];
if ( sx < 0 ) {
ix = (1-N) * sx;
} else {
ix = 0;
}
if ( sm < 0 ) {
im = (1-N) * sm;
} else {
im = 0;
}
if ( sy < 0 ) {
iy = (1-N) * sy;
} else {
iy = 0;
}
x = arrays[ 0 ];
m = arrays[ 1 ];
y = arrays[ 2 ];
for ( i = 0; i < N; i++ ) {
if ( m[ im ] === 0 ) {
y[ iy ] = fcn( x[ ix ] );
}
ix += sx;
im += sm;
iy += sy;
}
}
// EXPORTS //
module.exports = mskunary;