time-to-botec/squiggle/node_modules/@stdlib/random/sample/lib/vose.js

107 lines
2.4 KiB
JavaScript
Raw Normal View History

/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var floor = require( '@stdlib/math/base/special/floor' );
// MAIN //
/**
* Samples with replacement and non-uniform probabilities using Vose's [alias method][alias-method].
*
* ## References
*
* - Vose, Michael D. 1991. "A linear algorithm for generating random numbers with a given distribution." _IEEE Transactions on Software Engineering_ 17 (9): 97275. doi:[10.1109/32.92917][@vose:1991].
*
* [alias-method]: http://keithschwarz.com/darts-dice-coins/
* [@vose:1991]: https://doi.org/10.1109/32.92917
*
*
* @private
* @param {ArrayLike} x - array-like object from which to sample
* @param {NonNegativeInteger} size - sample size
* @param {Function} rand - PRNG for generating uniformly distributed numbers
* @param {ProbabilityArray} probabilities - element probabilities
* @returns {Array} sample
*/
function vose( x, size, rand, probabilities ) {
var small;
var large;
var probs;
var alias;
var out;
var N;
var p;
var g;
var i;
var l;
probs = probabilities.slice();
N = x.length;
small = [];
large = [];
for ( i = 0; i < N; i++ ) {
probs[ i ] *= N;
if ( probs[ i ] < 1.0 ) {
small.push( i );
} else {
large.push( i );
}
}
alias = new Array( N );
p = new Array( N );
while ( small.length !== 0 && large.length !== 0 ) {
l = small.shift();
g = large.shift();
p[ l ] = probs[ l ];
alias[ l ] = g;
probs[ g ] = probs[ g ] + probs[ l ] - 1.0;
if ( probs[ g ] < 1.0 ) {
small.push( g );
} else {
large.push( g );
}
}
for ( i = 0; i < large.length; i++ ) {
p[ large[ i ] ] = 1.0;
}
for ( i = 0; i < small.length; i++ ) {
p[ small[ i ] ] = 1.0;
}
out = new Array( size );
for ( i = 0; i < size; i++ ) {
l = floor( N*rand() );
if ( rand() < p[ l ] ) {
out[ i ] = x[ l ];
} else {
out[ i ] = x[ alias[ l ] ];
}
}
return out;
}
// EXPORTS //
module.exports = vose;