184 lines
5.3 KiB
Markdown
184 lines
5.3 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# evalrational
|
||
|
|
||
|
> Evaluate a [rational function][rational-function].
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
A [rational function][rational-function] `f(x)` is defined as
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:rational_function" align="center" raw="f(x) = \frac{P(x)}{Q(x)}" alt="Rational function definition."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="f(x) = \frac{P(x)}{Q(x)}" data-equation="eq:rational_function">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/evalrational/docs/img/equation_rational_function.svg" alt="Rational function definition.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where both `P(x)` and `Q(x)` are polynomials in `x`. A [polynomial][polynomial] in `x` can be expressed
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:polynomial" align="center" raw="c_nx^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0 = \sum_{i=0}^{n} c_ix^i" alt="Polynomial expression."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="c_nx^n + c_{n-1}x^{n-1} + \ldots + c_1x^1 + c_0 = \sum_{i=0}^{n} c_ix^i" data-equation="eq:polynomial">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@7e0a95722efd9c771b129597380c63dc6715508b/lib/node_modules/@stdlib/math/base/tools/evalrational/docs/img/equation_polynomial.svg" alt="Polynomial expression.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `c_n, c_{n-1}, ..., c_0` are constants.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var evalrational = require( '@stdlib/math/base/tools/evalrational' );
|
||
|
```
|
||
|
|
||
|
#### evalrational( P, Q, x )
|
||
|
|
||
|
Evaluates a [rational function][rational-function] at a value `x`. The coefficients `P` and `Q` are expected to be arrays of the **same** length.
|
||
|
|
||
|
```javascript
|
||
|
var P = [ -6.0, -5.0 ];
|
||
|
var Q = [ 3.0, 0.5 ];
|
||
|
|
||
|
var v = evalrational( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
|
||
|
// returns -6.0
|
||
|
```
|
||
|
|
||
|
For polynomials of different degree, the coefficient array for the lower degree [polynomial][polynomial] should be padded with zeros.
|
||
|
|
||
|
```javascript
|
||
|
// 2x^3 + 4x^2 - 5x^1 - 6x^0 => degree 4
|
||
|
var P = [ -6.0, -5.0, 4.0, 2.0 ];
|
||
|
|
||
|
// 0.5x^1 + 3x^0 => degree 2
|
||
|
var Q = [ 3.0, 0.5, 0.0, 0.0 ]; // zero-padded
|
||
|
|
||
|
var v = evalrational( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 + 4*6^2 + 2*6^3 ) / ( 3*6^0 + 0.5*6^1 + 0*6^2 + 0*6^3 ) = (-6-30+144+432)/(3+3)
|
||
|
// returns 90.0
|
||
|
```
|
||
|
|
||
|
Coefficients should be ordered in **ascending** degree, thus matching summation notation.
|
||
|
|
||
|
#### evalrational.factory( P, Q )
|
||
|
|
||
|
Uses code generation to in-line coefficients and return a `function` for evaluating a [rational function][rational-function].
|
||
|
|
||
|
```javascript
|
||
|
var P = [ 20.0, 8.0, 3.0 ];
|
||
|
var Q = [ 10.0, 9.0, 1.0 ];
|
||
|
|
||
|
var rational = evalrational.factory( P, Q );
|
||
|
|
||
|
var v = rational( 10.0 ); // => (20*10^0 + 8*10^1 + 3*10^2) / (10*10^0 + 9*10^1 + 1*10^2) = (20+80+300)/(10+90+100)
|
||
|
// returns 2.0
|
||
|
|
||
|
v = rational( 2.0 ); // => (20*2^0 + 8*2^1 + 3*2^2) / (10*2^0 + 9*2^1 + 1*2^2) = (20+16+12)/(10+18+4)
|
||
|
// returns 1.5
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="notes">
|
||
|
|
||
|
## Notes
|
||
|
|
||
|
- For hot code paths in which coefficients are invariant, a compiled function will be more performant than `evalrational()`.
|
||
|
- While code generation can boost performance, its use may be problematic in browser contexts enforcing a strict [content security policy][mdn-csp] (CSP). If running in or targeting an environment with a CSP, avoid using code generation.
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.notes -->
|
||
|
|
||
|
<section class="examples">
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var randu = require( '@stdlib/random/base/randu' );
|
||
|
var round = require( '@stdlib/math/base/special/round' );
|
||
|
var Float64Array = require( '@stdlib/array/float64' );
|
||
|
var evalrational = require( '@stdlib/math/base/tools/evalrational' );
|
||
|
|
||
|
var rational;
|
||
|
var sign;
|
||
|
var len;
|
||
|
var P;
|
||
|
var Q;
|
||
|
var v;
|
||
|
var i;
|
||
|
|
||
|
// Create two arrays of random coefficients...
|
||
|
len = 10;
|
||
|
P = new Float64Array( len );
|
||
|
Q = new Float64Array( len );
|
||
|
for ( i = 0; i < len; i++ ) {
|
||
|
if ( randu() < 0.5 ) {
|
||
|
sign = -1.0;
|
||
|
} else {
|
||
|
sign = 1.0;
|
||
|
}
|
||
|
P[ i ] = sign * round( randu()*100 );
|
||
|
Q[ i ] = sign * round( randu()*100 );
|
||
|
}
|
||
|
|
||
|
// Evaluate the rational function at random values...
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v = randu() * 100.0;
|
||
|
console.log( 'f(%d) = %d', v, evalrational( P, Q, v ) );
|
||
|
}
|
||
|
|
||
|
// Generate an `evalrational` function...
|
||
|
rational = evalrational.factory( P, Q );
|
||
|
for ( i = 0; i < 100; i++ ) {
|
||
|
v = (randu()*100.0) - 50.0;
|
||
|
console.log( 'f(%d) = %d', v, rational( v ) );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[polynomial]: https://en.wikipedia.org/wiki/Polynomial
|
||
|
|
||
|
[rational-function]: https://en.wikipedia.org/wiki/Rational_function
|
||
|
|
||
|
[mdn-csp]: https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|