142 lines
3.9 KiB
Markdown
142 lines
3.9 KiB
Markdown
|
<!--
|
|||
|
|
|||
|
@license Apache-2.0
|
|||
|
|
|||
|
Copyright (c) 2018 The Stdlib Authors.
|
|||
|
|
|||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
you may not use this file except in compliance with the License.
|
|||
|
You may obtain a copy of the License at
|
|||
|
|
|||
|
http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
|
|||
|
Unless required by applicable law or agreed to in writing, software
|
|||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
See the License for the specific language governing permissions and
|
|||
|
limitations under the License.
|
|||
|
|
|||
|
-->
|
|||
|
|
|||
|
# inv
|
|||
|
|
|||
|
> Compute the inverse of a complex number.
|
|||
|
|
|||
|
<section class="intro">
|
|||
|
|
|||
|
The inverse (or reciprocal) of a non-zero complex number `z = a + bi` is defined as
|
|||
|
|
|||
|
<!-- <equation class="equation" label="eq:complex_inverse" align="center" raw="{\frac {1}{z}}=\frac{\bar{z}}{z{\bar{z}}} = \frac{a}{a^{2}+b^{2}} - \frac{b}{a^2+b^2}i." alt="Complex Inverse" > -->
|
|||
|
|
|||
|
<div class="equation" align="center" data-raw-text="{\frac {1}{z}}=\frac{\bar{z}}{z{\bar{z}}} = \frac{a}{a^{2}+b^{2}} - \frac{b}{a^2+b^2}i." data-equation="eq:complex_inverse">
|
|||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@026bc0ee34051ddb44f3222f620bc7a300b9799e/lib/node_modules/@stdlib/math/base/special/cinv/docs/img/equation_complex_inverse.svg" alt="Complex Inverse">
|
|||
|
<br>
|
|||
|
</div>
|
|||
|
|
|||
|
<!-- </equation> -->
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.intro -->
|
|||
|
|
|||
|
<section class="usage">
|
|||
|
|
|||
|
## Usage
|
|||
|
|
|||
|
```javascript
|
|||
|
var cinv = require( '@stdlib/math/base/special/cinv' );
|
|||
|
```
|
|||
|
|
|||
|
#### cinv( \[out,] re1, im1 )
|
|||
|
|
|||
|
Computes the inverse of a `complex` number comprised of a **real** component `re` and an **imaginary** component `im`.
|
|||
|
|
|||
|
```javascript
|
|||
|
var v = cinv( 2.0, 4.0 );
|
|||
|
// returns [ 0.1, -0.2 ]
|
|||
|
```
|
|||
|
|
|||
|
By default, the function returns real and imaginary components as a two-element `array`. To avoid unnecessary memory allocation, the function supports providing an output (destination) object.
|
|||
|
|
|||
|
```javascript
|
|||
|
var Float64Array = require( '@stdlib/array/float64' );
|
|||
|
|
|||
|
var out = new Float64Array( 2 );
|
|||
|
|
|||
|
var v = cinv( out, 2.0, 4.0 );
|
|||
|
// returns <Float64Array>[ 0.1, -0.2 ]
|
|||
|
|
|||
|
var bool = ( v === out );
|
|||
|
// returns true
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.usage -->
|
|||
|
|
|||
|
<section class="examples">
|
|||
|
|
|||
|
## Examples
|
|||
|
|
|||
|
<!-- eslint no-undef: "error" -->
|
|||
|
|
|||
|
```javascript
|
|||
|
var Complex128 = require( '@stdlib/complex/float64' );
|
|||
|
var randu = require( '@stdlib/random/base/randu' );
|
|||
|
var round = require( '@stdlib/math/base/special/round' );
|
|||
|
var real = require( '@stdlib/complex/real' );
|
|||
|
var imag = require( '@stdlib/complex/imag' );
|
|||
|
var cinv = require( '@stdlib/math/base/special/cinv' );
|
|||
|
|
|||
|
var re;
|
|||
|
var im;
|
|||
|
var z1;
|
|||
|
var z2;
|
|||
|
var o;
|
|||
|
var i;
|
|||
|
|
|||
|
for ( i = 0; i < 100; i++ ) {
|
|||
|
re = round( randu()*100.0 ) - 50.0;
|
|||
|
im = round( randu()*100.0 ) - 50.0;
|
|||
|
z1 = new Complex128( re, im );
|
|||
|
|
|||
|
o = cinv( real(z1), imag(z1) );
|
|||
|
z2 = new Complex128( o[ 0 ], o[ 1 ] );
|
|||
|
|
|||
|
console.log( '1.0 / (%s) = %s', z1.toString(), z2.toString() );
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.examples -->
|
|||
|
|
|||
|
* * *
|
|||
|
|
|||
|
<section class="references">
|
|||
|
|
|||
|
## References
|
|||
|
|
|||
|
- Smith, Robert L. 1962. "Algorithm 116: Complex Division." _Commun. ACM_ 5 (8). New York, NY, USA: ACM: 435. doi:[10.1145/368637.368661][@smith:1962a].
|
|||
|
- Stewart, G. W. 1985. "A Note on Complex Division." _ACM Trans. Math. Softw._ 11 (3). New York, NY, USA: ACM: 238–41. doi:[10.1145/214408.214414][@stewart:1985a].
|
|||
|
- Priest, Douglas M. 2004. "Efficient Scaling for Complex Division." _ACM Trans. Math. Softw._ 30 (4). New York, NY, USA: ACM: 389–401. doi:[10.1145/1039813.1039814][@priest:2004a].
|
|||
|
- Baudin, Michael, and Robert L. Smith. 2012. "A Robust Complex Division in Scilab." _arXiv_ abs/1210.4539 \[cs.MS] (October): 1–25. [<https://arxiv.org/abs/1210.4539>][@baudin:2012a].
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.references -->
|
|||
|
|
|||
|
<section class="links">
|
|||
|
|
|||
|
[@smith:1962a]: https://doi.org/10.1145/368637.368661
|
|||
|
|
|||
|
[@stewart:1985a]: https://doi.org/10.1145/214408.214414
|
|||
|
|
|||
|
[@priest:2004a]: https://doi.org/10.1145/1039813.1039814
|
|||
|
|
|||
|
[@baudin:2012a]: https://arxiv.org/abs/1210.4539
|
|||
|
|
|||
|
</section>
|
|||
|
|
|||
|
<!-- /.links -->
|