time-to-botec/C/samples.c

235 lines
6.8 KiB
C
Raw Normal View History

2023-06-02 22:00:49 +00:00
#include <math.h>
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
const float PI = 3.14159265358979323846;
#define N 1000000
//Array helpers
void array_print(float* array, int length)
{
for (int i = 0; i < length; i++) {
printf("item[%d] = %f\n", i, array[i]);
}
printf("\n");
}
float array_sum(float* array, int length)
{
float output = 0.0;
for (int i = 0; i < length; i++) {
output += array[i];
}
return output;
}
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
{
array_cumsummed[0] = array_to_sum[0];
for (int i = 1; i < length; i++) {
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
}
}
2023-06-02 22:05:42 +00:00
// Split array helpers
int split_array_get_my_length(int index, int total_length, int n_threads)
{
return (total_length % n_threads > index ? total_length / n_threads + 1 : total_length / n_threads);
}
void split_array_allocate(float** meta_array, int length, int divide_into)
{
int own_length;
for (int i = 0; i < divide_into; i++) {
own_length = split_array_get_my_length(i, length, divide_into);
meta_array[i] = malloc(own_length * sizeof(float));
}
}
void split_array_free(float** meta_array, int divided_into)
{
for (int i = 0; i < divided_into; i++) {
free(meta_array[i]);
}
free(meta_array);
}
float split_array_sum(float** meta_array, int length, int divided_into)
{
int i;
float output;
float* partial_sum = malloc(divided_into * sizeof(float));
#pragma omp private(i) shared(partial_sum)
for (int i = 0; i < divided_into; i++) {
float own_partial_sum = 0;
int own_length = split_array_get_my_length(i, length, divided_into);
for (int j = 0; j < own_length; j++) {
own_partial_sum += meta_array[i][j];
}
partial_sum[i] = own_partial_sum;
}
for (int i = 0; i < divided_into; i++) {
output += partial_sum[i];
}
return output;
}
// Distribution & sampling functions
2023-06-02 22:00:49 +00:00
float rand_float(float to, unsigned int* seed)
{
return ((float)rand_r(seed) / (float)RAND_MAX) * to;
2023-06-02 22:37:57 +00:00
// See: <https://stackoverflow.com/questions/43151361/how-to-create-thread-safe-random-number-generator-in-c-using-rand-r> for why to use rand_r:
// rand() is not thread-safe, as it relies on (shared) hidden state.
2023-06-02 22:00:49 +00:00
}
float ur_normal(unsigned int* seed)
{
float u1 = rand_float(1.0, seed);
float u2 = rand_float(1.0, seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
inline float random_uniform(float from, float to, unsigned int* seed)
{
2023-06-02 22:37:57 +00:00
return ((float)rand_r(seed) / (float)RAND_MAX) * (to - from) + from;
2023-06-02 22:00:49 +00:00
}
inline float random_normal(float mean, float sigma, unsigned int* seed)
{
return (mean + sigma * ur_normal(seed));
}
inline float random_lognormal(float logmean, float logsigma, unsigned int* seed)
{
return expf(random_normal(logmean, logsigma, seed));
}
inline float random_to(float low, float high, unsigned int* seed)
{
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
float logmean = (loglow + loghigh) / 2;
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return random_lognormal(logmean, logsigma, seed);
}
2023-06-02 22:05:42 +00:00
// Mixture function
2023-06-02 22:37:57 +00:00
void mixture(float (*samplers[])(unsigned int*), float* weights, int n_dists, float** results, int n_threads)
2023-06-02 22:00:49 +00:00
{
2023-06-02 22:37:57 +00:00
// You can see a simpler version of this function in the git history
// or in C-02-better-algorithm-one-thread/
2023-06-02 22:00:49 +00:00
float sum_weights = array_sum(weights, n_dists);
/*float* normalized_weights = malloc(n_dists * sizeof(float));
// float normalized_weights[n_dists];
2023-06-02 22:00:49 +00:00
for (int i = 0; i < n_dists; i++) {
normalized_weights[i] = weights[i] / sum_weights;
}
float* cummulative_weights = malloc(n_dists * sizeof(float));
// float cummulative_weights[n_dists];
2023-06-02 22:00:49 +00:00
array_cumsum(normalized_weights, cummulative_weights, n_dists);
*/
float* cumsummed_normalized_weights = malloc(n_dists * sizeof(float));
cumsummed_normalized_weights[0] = weights[0]/sum_weights;
for (int i = 1; i < n_dists; i++) {
cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i]/sum_weights;
}
2023-06-02 22:00:49 +00:00
//create var holders
float p1;
int sample_index, i, own_length;
// unsigned int* seeds[n_threads];
unsigned int** seeds = malloc(n_threads * sizeof(unsigned int*));
for (unsigned int i = 0; i < n_threads; i++) {
2023-06-02 22:37:57 +00:00
seeds[i] = malloc(sizeof(unsigned int));
*seeds[i] = i;
}
2023-06-02 22:00:49 +00:00
#pragma omp parallel private(i, p1, sample_index, own_length)
{
#pragma omp for
for (i = 0; i < n_threads; i++) {
own_length = split_array_get_my_length(i, N, n_threads);
for (int j = 0; j < own_length; j++) {
p1 = random_uniform(0, 1, seeds[i]);
for (int k = 0; k < n_dists; k++) {
if (p1 < cumsummed_normalized_weights[k]) {
2023-06-02 22:00:49 +00:00
results[i][j] = samplers[k](seeds[i]);
break;
}
}
}
}
}
// free(normalized_weights);
// free(cummulative_weights);
free(cumsummed_normalized_weights);
2023-06-02 22:37:57 +00:00
for (unsigned int i = 0; i < n_threads; i++) {
free(seeds[i]);
}
free(seeds);
2023-06-02 22:00:49 +00:00
}
2023-06-02 22:05:42 +00:00
// Functions used for the BOTEC.
// Their type has to be the same, as we will be passing them around.
2023-06-02 22:00:49 +00:00
float sample_0(unsigned int* seed)
{
return 0;
}
float sample_1(unsigned int* seed)
{
return 1;
}
float sample_few(unsigned int* seed)
{
return random_to(1, 3, seed);
}
float sample_many(unsigned int* seed)
{
return random_to(2, 10, seed);
}
int main()
{
2023-06-02 22:37:57 +00:00
// Toy example
// Declare variables in play
float p_a, p_b, p_c;
int n_threads = omp_get_max_threads();
// printf("Max threads: %d\n", n_threads);
// omp_set_num_threads(n_threads);
float** dist_mixture = malloc(n_threads * sizeof(float*));
split_array_allocate(dist_mixture, N, n_threads);
// Initialize variables
p_a = 0.8;
p_b = 0.5;
p_c = p_a * p_b;
// Generate mixture
int n_dists = 4;
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
float (*samplers[])(unsigned int*) = { sample_0, sample_1, sample_few, sample_many };
mixture(samplers, weights, n_dists, dist_mixture, n_threads);
printf("Sum(dist_mixture, N)/N = %f\n", split_array_sum(dist_mixture, N, n_threads) / N);
// array_print(dist_mixture[0], N);
split_array_free(dist_mixture, n_threads);
2023-06-02 22:00:49 +00:00
return 0;
}