380 lines
9.6 KiB
Markdown
380 lines
9.6 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2020 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# Wilcoxon Signed Rank Test
|
||
|
|
||
|
> One-sample and paired Wilcoxon signed rank test.
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var wilcoxon = require( '@stdlib/stats/wilcoxon' );
|
||
|
```
|
||
|
|
||
|
#### wilcoxon( x\[, y]\[, opts] )
|
||
|
|
||
|
Performs a one-sample t-test for the null hypothesis that the data in [array][mdn-array] or [typed array][mdn-typed-array] `x` is drawn from a distribution that is symmetric around zero (i.e., with median zero).
|
||
|
|
||
|
```javascript
|
||
|
// Differences in plant heights, see Cureton (1967)
|
||
|
var x = [ 6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75 ];
|
||
|
var out = wilcoxon( x );
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': true,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': 0.04125976562499978,
|
||
|
'statistic': 96,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
When [array][mdn-array] or [typed array][mdn-typed-array] `y` is supplied, the function tests whether the paired differences `x - y` come from a distribution that is symmetric around zero (i.e., with median zero).
|
||
|
|
||
|
```javascript
|
||
|
// Patient measurements at first (x) and second (y) visit, see Hollander & Wolfe (1973)
|
||
|
var x = [ 1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30 ];
|
||
|
var y = [ 0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29 ];
|
||
|
|
||
|
var out = wilcoxon( x, y );
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': true,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': 0.0390625,
|
||
|
'statistic': 40,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
The returned object comes with a `.print()` method which when invoked will print a formatted output of the hypothesis test results. `print` accepts a `digits` option that controls the number of decimal digits displayed for the outputs and a `decision` option, which when set to `false` will hide the test decision.
|
||
|
|
||
|
<!-- run-disable -->
|
||
|
|
||
|
```javascript
|
||
|
console.log( out.print() );
|
||
|
/* e.g., =>
|
||
|
Paired Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of the difference `x - y` is not equal to 0
|
||
|
|
||
|
pValue: 0.0391
|
||
|
statistic: 40
|
||
|
|
||
|
Test Decision: Reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
The `wilcoxon` function accepts the following `options`:
|
||
|
|
||
|
- **alpha**: `number` in the interval `[0,1]` giving the significance level of the hypothesis test. Default: `0.05`.
|
||
|
- **alternative**: Either `two-sided`, `less` or `greater`. Indicates whether the alternative hypothesis is that the mean of `x` is larger than `mu` (`greater`), smaller than `mu` (`less`), or equal to `mu` (`two-sided`). Default: `two-sided`.
|
||
|
- **correction**: continuity correction adjusting the Wilcoxon rank statistic by 0.5 towards the mean when using the normal approximation. Default: `true`.
|
||
|
- **exact**: Determines whether to force use of the exact distribution instead of a normal approximation when there are more than fifty data points. Default: `false`.
|
||
|
- **mu**: `number` denoting the hypothesized median under the null hypothesis. Default: `0`.
|
||
|
- **zeroMethod**: Method governing how zero-differences are handled (`pratt`, `wilcox`, or `zsplit`). Default: `'wilcox'`.
|
||
|
|
||
|
By default, the hypothesis test is carried out at a significance level of `0.05`. To choose a different significance level, set the `alpha` option.
|
||
|
|
||
|
```javascript
|
||
|
var table;
|
||
|
var out;
|
||
|
var arr;
|
||
|
|
||
|
arr = [ 2, 4, 3, 1, 0 ];
|
||
|
out = wilcoxon( arr, {
|
||
|
'alpha': 0.01
|
||
|
});
|
||
|
table = out.print();
|
||
|
/* e.g., returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is not equal to 0
|
||
|
|
||
|
pValue: 0.035
|
||
|
statistic: 21
|
||
|
|
||
|
Test Decision: Reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'alpha': 0.1
|
||
|
});
|
||
|
table = out.print();
|
||
|
/* e.g., returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is not equal to 0
|
||
|
|
||
|
pValue: 0.035
|
||
|
statistic: 21
|
||
|
|
||
|
Test Decision: Fail to reject null in favor of alternative at 1% significance level
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
To test whether the data comes from a distribution with a median different than zero, set the `mu` option.
|
||
|
|
||
|
```javascript
|
||
|
var arr = [ 4, 4, 6, 6, 5 ];
|
||
|
var out = wilcoxon( arr, {
|
||
|
'mu': 5
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'pValue': 1,
|
||
|
'statistic': 0,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
By default, a two-sided test is performed. To perform either of the one-sided tests, set the `alternative` option to `less` or `greater`.
|
||
|
|
||
|
```javascript
|
||
|
var arr = [ 4, 4, 6, 6, 5 ];
|
||
|
var out = wilcoxon( arr, {
|
||
|
'alternative': 'less'
|
||
|
});
|
||
|
var table = out.print();
|
||
|
/* e.g., returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is less than 0
|
||
|
|
||
|
pValue: 0.9853
|
||
|
statistic: 15
|
||
|
|
||
|
Test Decision: Fail to reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'alternative': 'greater'
|
||
|
});
|
||
|
table = out.print();
|
||
|
/* e.g., returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is greater than 0
|
||
|
|
||
|
pValue: 0.0284
|
||
|
statistic: 15
|
||
|
|
||
|
Test Decision: Reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
By default, all zero-differences are discarded before calculating the ranks. Set `zeroMethod` to `pratt` when you wish differences of zero to be used in the rank calculation but then drop them or to `zsplit` when differences of zero are shall be used in the ranking procedure and the ranks then split between positive and negative ones.
|
||
|
|
||
|
```javascript
|
||
|
var arr = [ 0, 2, 3, -1, -4, 0, 0, 8, 9 ];
|
||
|
var out = wilcoxon( arr, {
|
||
|
'zeroMethod': 'pratt'
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.331,
|
||
|
'statistic': 28,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'zeroMethod': 'zsplit'
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.342,
|
||
|
'statistic': 31,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
By default, the test uses the exact distribution of the rank statistic to calculate the critical values for the test in case of no ties and no zero-differences. Since it is more computationally efficient, starting with fifty observations a normal approximation is employed. If you would like the test to use the correct distribution even for larger samples, set the `exact` option to `true`.
|
||
|
|
||
|
```javascript
|
||
|
var normal = require( '@stdlib/random/base/normal' ).factory;
|
||
|
var rnorm;
|
||
|
var arr;
|
||
|
var out;
|
||
|
var i;
|
||
|
|
||
|
rnorm = normal( 0.0, 4.0, {
|
||
|
'seed': 100
|
||
|
});
|
||
|
arr = new Array( 100 );
|
||
|
for ( i = 0; i < arr.length; i++ ) {
|
||
|
arr[ i ] = rnorm();
|
||
|
}
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'exact': false
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.422,
|
||
|
'statistic': 2291,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'exact': true
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.424,
|
||
|
'statistic': 2291,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
By default, when using the normal approximation, the test uses a continuity correction, which adjusts the Wilcoxon rank statistic by `0.5` towards the mean. To disable this correction, set `correction` to `false`.
|
||
|
|
||
|
```javascript
|
||
|
var normal = require( '@stdlib/random/base/normal' ).factory;
|
||
|
var rnorm;
|
||
|
var arr;
|
||
|
var out;
|
||
|
var i;
|
||
|
|
||
|
rnorm = normal( 0.0, 4.0, {
|
||
|
'seed': 100
|
||
|
});
|
||
|
arr = new Array( 100 );
|
||
|
for ( i = 0; i < arr.length; i++ ) {
|
||
|
arr[ i ] = rnorm();
|
||
|
}
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'correction': false
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.421,
|
||
|
'statistic': 2291,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
out = wilcoxon( arr, {
|
||
|
'correction': true
|
||
|
});
|
||
|
/* e.g., returns
|
||
|
{
|
||
|
'rejected': false,
|
||
|
'alpha': 0.05,
|
||
|
'pValue': ~0.422,
|
||
|
'statistic': 2291,
|
||
|
// ...
|
||
|
}
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var uniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
|
||
|
var wilcoxon = require( '@stdlib/stats/wilcoxon' );
|
||
|
|
||
|
var table;
|
||
|
var runif;
|
||
|
var arr;
|
||
|
var out;
|
||
|
var i;
|
||
|
|
||
|
runif = uniform( -50.0, 50.0, {
|
||
|
'seed': 37827
|
||
|
});
|
||
|
arr = new Array( 100 );
|
||
|
for ( i = 0; i < arr.length; i++ ) {
|
||
|
arr[ i ] = runif();
|
||
|
}
|
||
|
|
||
|
// Test whether distribution is symmetric around zero:
|
||
|
out = wilcoxon( arr );
|
||
|
table = out.print();
|
||
|
/* e.g., returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is not equal to 0
|
||
|
|
||
|
pValue: 0.7714
|
||
|
statistic: 2438.5
|
||
|
|
||
|
Test Decision: Fail to reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
|
||
|
// Test whether distribution has median of five:
|
||
|
out = wilcoxon( arr, {
|
||
|
'mu': 5.0
|
||
|
});
|
||
|
table = out.print();
|
||
|
/* e.g, returns
|
||
|
One-Sample Wilcoxon signed rank test
|
||
|
|
||
|
Alternative hypothesis: Median of `x` is not equal to 5
|
||
|
|
||
|
pValue: 0.0529
|
||
|
statistic: 1961.5
|
||
|
|
||
|
Test Decision: Fail to reject null in favor of alternative at 5% significance level
|
||
|
*/
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
|
||
|
|
||
|
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|