87 lines
2.9 KiB
Plaintext
87 lines
2.9 KiB
Plaintext
|
|
|||
|
{{alias}}( [options] )
|
|||
|
Returns an accumulator function which incrementally performs Grubbs' test
|
|||
|
for detecting outliers.
|
|||
|
|
|||
|
Grubbs' test assumes that data is normally distributed. Accordingly, one
|
|||
|
should first verify that the data can be reasonably approximated by a normal
|
|||
|
distribution before applying the Grubbs' test.
|
|||
|
|
|||
|
If provided a value, the accumulator function returns updated test results.
|
|||
|
If not provided a value, the accumulator function returns the current test
|
|||
|
results.
|
|||
|
|
|||
|
If provided `NaN` or a value which, when used in computations, results in
|
|||
|
`NaN`, the test statistic is `NaN` for all future invocations.
|
|||
|
|
|||
|
The accumulator must be provided *at least* three data points before
|
|||
|
performing Grubbs' test. Until at least three data points are provided, the
|
|||
|
accumulator returns `null`.
|
|||
|
|
|||
|
The accumulator function returns an object having the following fields:
|
|||
|
|
|||
|
- rejected: boolean indicating whether the null hypothesis should be
|
|||
|
rejected.
|
|||
|
- alpha: significance level.
|
|||
|
- criticalValue: critical value.
|
|||
|
- statistic: test statistic.
|
|||
|
- df: degrees of freedom.
|
|||
|
- mean: sample mean.
|
|||
|
- sd: corrected sample standard deviation.
|
|||
|
- min: minimum value.
|
|||
|
- max: maximum value.
|
|||
|
- alt: alternative hypothesis.
|
|||
|
- method: method name.
|
|||
|
- print: method for pretty-printing test output.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
options: Object (optional)
|
|||
|
Function options.
|
|||
|
|
|||
|
options.alpha: number (optional)
|
|||
|
Significance level. Default: 0.05.
|
|||
|
|
|||
|
options.alternative: string (optional)
|
|||
|
Alternative hypothesis. The option may be one of the following values:
|
|||
|
|
|||
|
- 'two-sided': test whether the minimum or maximum value is an outlier.
|
|||
|
- 'min': test whether the minimum value is an outlier.
|
|||
|
- 'max': test whether the maximum value is an outlier.
|
|||
|
|
|||
|
Default: 'two-sided'.
|
|||
|
|
|||
|
options.init: integer (optional)
|
|||
|
Number of data points the accumulator should use to compute initial
|
|||
|
statistics *before* testing for an outlier. Until the accumulator is
|
|||
|
provided the number of data points specified by this option, the
|
|||
|
accumulator returns `null`. Default: 100.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
acc: Function
|
|||
|
Accumulator function.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
> var acc = {{alias}}();
|
|||
|
> var res = acc()
|
|||
|
null
|
|||
|
> for ( var i = 0; i < 200; i++ ) {
|
|||
|
... res = acc( {{alias:@stdlib/random/base/normal}}( 10.0, 5.0 ) );
|
|||
|
... };
|
|||
|
> res.print()
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
- Grubbs, Frank E. 1950. "Sample Criteria for Testing Outlying
|
|||
|
Observations." _The Annals of Mathematical Statistics_ 21 (1). The Institute
|
|||
|
of Mathematical Statistics: 27–58. doi:10.1214/aoms/1177729885.
|
|||
|
- Grubbs, Frank E. 1969. "Procedures for Detecting Outlying Observations in
|
|||
|
Samples." _Technometrics_ 11 (1). Taylor & Francis: 1–21. doi:10.1080/
|
|||
|
00401706.1969.10490657.
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
|