time-to-botec/js/node_modules/@stdlib/stats/base/dsemch/docs/repl.txt

120 lines
4.1 KiB
Plaintext
Raw Permalink Normal View History

{{alias}}( N, correction, x, stride )
Computes the standard error of the mean for a double-precision floating-
point strided array using a one-pass trial mean algorithm.
The `N` and `stride` parameters determine which elements in `x` are accessed
at runtime.
Indexing is relative to the first index. To introduce an offset, use a typed
array view.
If `N <= 0`, the function returns `NaN`.
Parameters
----------
N: integer
Number of indexed elements.
correction: number
Degrees of freedom adjustment. Setting this parameter to a value other
than `0` has the effect of adjusting the divisor during the calculation
of the standard deviation according to `N - c` where `c` corresponds to
the provided degrees of freedom adjustment. When computing the standard
deviation of a population, setting this parameter to `0` is the standard
choice (i.e., the provided array contains data constituting an entire
population). When computing the corrected sample standard deviation,
setting this parameter to `1` is the standard choice (i.e., the provided
array contains data sampled from a larger population; this is commonly
referred to as Bessel's correction).
x: Float64Array
Input array.
stride: integer
Index increment.
Returns
-------
out: number
Standard error of the mean.
Examples
--------
// Standard Usage:
> var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
> {{alias}}( x.length, 1, x, 1 )
~1.20185
// Using `N` and `stride` parameters:
> x = new {{alias:@stdlib/array/float64}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> var stride = 2;
> {{alias}}( N, 1, x, stride )
~1.20185
// Using view offsets:
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
> stride = 2;
> {{alias}}( N, 1, x1, stride )
~1.20185
{{alias}}.ndarray( N, correction, x, stride, offset )
Computes the standard error of the mean for a double-precision floating-
point strided array using a one-pass trial mean algorithm and alternative
indexing semantics.
While typed array views mandate a view offset based on the underlying
buffer, the `offset` parameter supports indexing semantics based on a
starting index.
Parameters
----------
N: integer
Number of indexed elements.
correction: number
Degrees of freedom adjustment. Setting this parameter to a value other
than `0` has the effect of adjusting the divisor during the calculation
of the standard deviation according to `N - c` where `c` corresponds to
the provided degrees of freedom adjustment. When computing the standard
deviation of a population, setting this parameter to `0` is the standard
choice (i.e., the provided array contains data constituting an entire
population). When computing the corrected sample standard deviation,
setting this parameter to `1` is the standard choice (i.e., the provided
array contains data sampled from a larger population; this is commonly
referred to as Bessel's correction).
x: Float64Array
Input array.
stride: integer
Index increment.
offset: integer
Starting index.
Returns
-------
out: number
Standard error of the mean.
Examples
--------
// Standard Usage:
> var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 2.0 ] );
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
~1.20185
// Using offset parameter:
> var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}.ndarray( N, 1, x, 2, 1 )
~1.20185
See Also
--------