124 lines
3.7 KiB
Markdown
124 lines
3.7 KiB
Markdown
|
<!--
|
||
|
|
||
|
@license Apache-2.0
|
||
|
|
||
|
Copyright (c) 2018 The Stdlib Authors.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
|
||
|
-->
|
||
|
|
||
|
# Gamma Scaled Lanczos Sum
|
||
|
|
||
|
> Calculate a scaled Lanczos sum for the approximation of the [gamma function][gamma-function].
|
||
|
|
||
|
<section class="intro">
|
||
|
|
||
|
The [Lanczos approximation][lanczos-approximation] for the [gamma function][gamma-function] can be written in partial fraction form as follows:
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:lanczos_approximation" align="center" raw="\Gamma ( n ) = \frac{(n+g-0.5)^{n-0.5}}{e^{n+g-0.5}} L_g(n)" alt="Lanczos approximation for gamma function."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="\Gamma ( n ) = \frac{(n+g-0.5)^{n-0.5}}{e^{n+g-0.5}} L_g(n)" data-equation="eq:lanczos_approximation">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/gamma-lanczos-sum-expg-scaled/docs/img/equation_lanczos_approximation.svg" alt="Lanczos approximation for gamma function.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
where `g` is an [arbitrary constant][@stdlib/constants/float64/gamma-lanczos-g] and `L_g(n)` is the Lanczos sum. The scaled Lanczos sum is given by
|
||
|
|
||
|
<!-- <equation class="equation" label="eq:scaled_lanczos_sum" align="center" raw="L_g(n) \cdot \exp(-g)" alt="Scaled Lanczos sum."> -->
|
||
|
|
||
|
<div class="equation" align="center" data-raw-text="L_g(n) \cdot \exp(-g)" data-equation="eq:scaled_lanczos_sum">
|
||
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@bb29798906e119fcb2af99e94b60407a270c9b32/lib/node_modules/@stdlib/math/base/special/gamma-lanczos-sum-expg-scaled/docs/img/equation_scaled_lanczos_sum.svg" alt="Scaled Lanczos sum.">
|
||
|
<br>
|
||
|
</div>
|
||
|
|
||
|
<!-- </equation> -->
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.intro -->
|
||
|
|
||
|
<section class="usage">
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```javascript
|
||
|
var gammaLanczosSumExpGScaled = require( '@stdlib/math/base/special/gamma-lanczos-sum-expg-scaled' );
|
||
|
```
|
||
|
|
||
|
#### gammaLanczosSumExpGScaled( x )
|
||
|
|
||
|
Calculates the Lanczos sum for the approximation of the [gamma function][gamma-function] (scaled by `exp(-g)`, where `g = 10.900511`).
|
||
|
|
||
|
```javascript
|
||
|
var v = gammaLanczosSumExpGScaled( 4.0 );
|
||
|
// returns ~0.018
|
||
|
|
||
|
v = gammaLanczosSumExpGScaled( -1.5 );
|
||
|
// returns ~25.337
|
||
|
|
||
|
v = gammaLanczosSumExpGScaled( -0.5 );
|
||
|
// returns ~-12.911
|
||
|
|
||
|
v = gammaLanczosSumExpGScaled( 0.5 );
|
||
|
// returns ~1.772
|
||
|
|
||
|
v = gammaLanczosSumExpGScaled( 0.0 );
|
||
|
// returns Infinity
|
||
|
|
||
|
v = gammaLanczosSumExpGScaled( NaN );
|
||
|
// returns NaN
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.usage -->
|
||
|
|
||
|
<section class="examples">
|
||
|
|
||
|
## Examples
|
||
|
|
||
|
<!-- eslint no-undef: "error" -->
|
||
|
|
||
|
```javascript
|
||
|
var linspace = require( '@stdlib/array/linspace' );
|
||
|
var gammaLanczosSumExpGScaled = require( '@stdlib/math/base/special/gamma-lanczos-sum-expg-scaled' );
|
||
|
|
||
|
var x = linspace( -10.0, 10.0, 100 );
|
||
|
var v;
|
||
|
var i;
|
||
|
|
||
|
for ( i = 0; i < x.length; i++ ) {
|
||
|
v = gammaLanczosSumExpGScaled( x[ i ] );
|
||
|
console.log( 'x: %d, f(x): %d', x[ i ], v );
|
||
|
}
|
||
|
```
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.examples -->
|
||
|
|
||
|
<section class="links">
|
||
|
|
||
|
[@stdlib/constants/float64/gamma-lanczos-g]: https://www.npmjs.com/package/@stdlib/constants-float64-gamma-lanczos-g
|
||
|
|
||
|
[gamma-function]: https://en.wikipedia.org/wiki/Gamma_function
|
||
|
|
||
|
[lanczos-approximation]: https://en.wikipedia.org/wiki/Lanczos_approximation
|
||
|
|
||
|
</section>
|
||
|
|
||
|
<!-- /.links -->
|