226 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <limits.h>
 | |
| #include <math.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| // math constants
 | |
| #define PI 3.14159265358979323846 // M_PI in gcc gnu99
 | |
| #define NORMAL90CONFIDENCE 1.6448536269514727
 | |
| 
 | |
| // Pseudo Random number generator
 | |
| uint64_t xorshift32(uint32_t* seed)
 | |
| {
 | |
|     // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
 | |
|     // See:
 | |
|     //   <https://en.wikipedia.org/wiki/Xorshift>
 | |
|     //   <https://stackoverflow.com/questions/53886131/how-does-xorshift32-works>,
 | |
|     // Also some drama:
 | |
|     //   <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>,
 | |
|     //   <https://prng.di.unimi.it/>
 | |
|     uint64_t x = *seed;
 | |
|     x ^= x << 13;
 | |
|     x ^= x >> 17;
 | |
|     x ^= x << 5;
 | |
|     return *seed = x;
 | |
| }
 | |
| 
 | |
| uint64_t xorshift64(uint64_t* seed)
 | |
| {
 | |
|     // same as above, but for generating doubles instead of floats
 | |
|     uint64_t x = *seed;
 | |
|     x ^= x << 13;
 | |
|     x ^= x >> 7;
 | |
|     x ^= x << 17;
 | |
|     return *seed = x;
 | |
| }
 | |
| 
 | |
| // Distribution & sampling functions
 | |
| // Unit distributions
 | |
| double sample_unit_uniform(uint64_t* seed)
 | |
| {
 | |
|     // samples uniform from [0,1] interval.
 | |
|     return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
 | |
| }
 | |
| 
 | |
| double sample_unit_normal(uint64_t* seed)
 | |
| {
 | |
|     // // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
 | |
|     double u1 = sample_unit_uniform(seed);
 | |
|     double u2 = sample_unit_uniform(seed);
 | |
|     double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| // Composite distributions
 | |
| double sample_uniform(double start, double end, uint64_t* seed)
 | |
| {
 | |
|     return sample_unit_uniform(seed) * (end - start) + start;
 | |
| }
 | |
| 
 | |
| double sample_normal(double mean, double sigma, uint64_t* seed)
 | |
| {
 | |
|     return (mean + sigma * sample_unit_normal(seed));
 | |
| }
 | |
| 
 | |
| double sample_lognormal(double logmean, double logstd, uint64_t* seed)
 | |
| {
 | |
|     return exp(sample_normal(logmean, logstd, seed));
 | |
| }
 | |
| 
 | |
| inline double sample_normal_from_90_confidence_interval(double low, double high, uint64_t* seed)
 | |
| {
 | |
|     // Explanation of key idea:
 | |
|     // 1. We know that the 90% confidence interval of the unit normal is
 | |
|     // [-1.6448536269514722, 1.6448536269514722]
 | |
|     // see e.g.: https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p
 | |
|     // or https://www.wolframalpha.com/input?i=N%5BInverseCDF%28normal%280%2C1%29%2C+0.05%29%2C%7B%E2%88%9E%2C100%7D%5D
 | |
|     // 2. So if we take a unit normal and multiply it by
 | |
|     // L / 1.6448536269514722, its new 90% confidence interval will be
 | |
|     // [-L, L], i.e., length 2 * L
 | |
|     // 3. Instead, if we want to get a confidence interval of length L,
 | |
|     // we should multiply the unit normal by
 | |
|     // L / (2 * 1.6448536269514722)
 | |
|     // Meaning that its standard deviation should be multiplied by that amount
 | |
|     // see: https://en.wikipedia.org/wiki/Normal_distribution?lang=en#Operations_on_a_single_normal_variable
 | |
|     // 4. So we have learnt that Normal(0, L / (2 * 1.6448536269514722))
 | |
|     // has a 90% confidence interval of length L
 | |
|     // 5. If we want a 90% confidence interval from high to low,
 | |
|     // we can set mean = (high + low)/2; the midpoint, and L = high-low,
 | |
|     // Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
 | |
|     double mean = (high + low) / 2.0;
 | |
|     double std = (high - low) / (2.0 * NORMAL90CONFIDENCE);
 | |
|     return sample_normal(mean, std, seed);
 | |
| }
 | |
| 
 | |
| double sample_to(double low, double high, uint64_t* seed)
 | |
| {
 | |
|     // Given a (positive) 90% confidence interval,
 | |
|     // returns a sample from a lognorma with a matching 90% c.i.
 | |
|     // Key idea: If we want a lognormal with 90% confidence interval [a, b]
 | |
|     // we need but get a normal with 90% confidence interval [log(a), log(b)].
 | |
|     // Then see code for sample_normal_from_90_confidence_interval
 | |
|     double loglow = logf(low);
 | |
|     double loghigh = logf(high);
 | |
|     return exp(sample_normal_from_90_confidence_interval(loglow, loghigh, seed));
 | |
| }
 | |
| 
 | |
| double sample_gamma(double alpha, uint64_t* seed)
 | |
| {
 | |
| 
 | |
|     // A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
 | |
|     // https://dl.acm.org/doi/pdf/10.1145/358407.358414
 | |
|     // see also the references/ folder
 | |
|     // Note that the Wikipedia page for the gamma distribution includes a scaling parameter
 | |
|     // k or beta
 | |
|     // https://en.wikipedia.org/wiki/Gamma_distribution
 | |
|     // such that gamma_k(alpha, k) = k * gamma(alpha)
 | |
|     // or gamma_beta(alpha, beta) = gamma(alpha) / beta
 | |
|     // So far I have not needed to use this, and thus the second parameter is by default 1.
 | |
|     if (alpha >= 1) {
 | |
|         double d, c, x, v, u;
 | |
|         d = alpha - 1.0 / 3.0;
 | |
|         c = 1.0 / sqrt(9.0 * d);
 | |
|         while (1) {
 | |
| 
 | |
|             do {
 | |
|                 x = sample_unit_normal(seed);
 | |
|                 v = 1.0 + c * x;
 | |
|             } while (v <= 0.0);
 | |
| 
 | |
|             v = v * v * v;
 | |
|             u = sample_unit_uniform(seed);
 | |
|             if (u < 1.0 - 0.0331 * (x * x * x * x)) { // Condition 1
 | |
|                 // the 0.0331 doesn't inspire much confidence
 | |
|                 // however, this isn't the whole story
 | |
|                 // by knowing that Condition 1 implies condition 2
 | |
|                 // we realize that this is just a way of making the algorithm faster
 | |
|                 // i.e., of not using the logarithms
 | |
|                 return d * v;
 | |
|             }
 | |
|             if (log(u) < 0.5 * (x * x) + d * (1.0 - v + log(v))) { // Condition 2
 | |
|                 return d * v;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         return sample_gamma(1 + alpha, seed) * pow(sample_unit_uniform(seed), 1 / alpha);
 | |
|         // see note in p. 371 of https://dl.acm.org/doi/pdf/10.1145/358407.358414
 | |
|     }
 | |
| }
 | |
| 
 | |
| double sample_beta(double a, double b, uint64_t* seed)
 | |
| {
 | |
|     // See: https://en.wikipedia.org/wiki/Gamma_distribution#Related_distributions
 | |
|     double gamma_a = sample_gamma(a, seed);
 | |
|     double gamma_b = sample_gamma(b, seed);
 | |
|     return gamma_a / (gamma_a + gamma_b);
 | |
| }
 | |
| 
 | |
| double sample_laplace(double successes, double failures, uint64_t* seed)
 | |
| {
 | |
|     // see <https://en.wikipedia.org/wiki/Beta_distribution?lang=en#Rule_of_succession>
 | |
|     return sample_beta(successes + 1, failures + 1, seed);
 | |
| }
 | |
| 
 | |
| // Array helpers
 | |
| double array_sum(double* array, int length)
 | |
| {
 | |
|     double sum = 0.0;
 | |
|     for (int i = 0; i < length; i++) {
 | |
|         sum += array[i];
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| void array_cumsum(double* array_to_sum, double* array_cumsummed, int length)
 | |
| {
 | |
|     array_cumsummed[0] = array_to_sum[0];
 | |
|     for (int i = 1; i < length; i++) {
 | |
|         array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| double array_mean(double* array, int length)
 | |
| {
 | |
|     double sum = array_sum(array, length);
 | |
|     return sum / length;
 | |
| }
 | |
| 
 | |
| double array_std(double* array, int length)
 | |
| {
 | |
|     double mean = array_mean(array, length);
 | |
|     double std = 0.0;
 | |
|     for (int i = 0; i < length; i++) {
 | |
|         std += (array[i] - mean) * (array[i] - mean);
 | |
|     }
 | |
|     std = sqrt(std / length);
 | |
|     return std;
 | |
| }
 | |
| 
 | |
| // Mixture function
 | |
| double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed)
 | |
| {
 | |
|     // Sample from samples with frequency proportional to their weights.
 | |
|     double sum_weights = array_sum(weights, n_dists);
 | |
|     double* cumsummed_normalized_weights = (double*)malloc(n_dists * sizeof(double));
 | |
|     cumsummed_normalized_weights[0] = weights[0] / sum_weights;
 | |
|     for (int i = 1; i < n_dists; i++) {
 | |
|         cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
 | |
|     }
 | |
| 
 | |
|     double result;
 | |
|     int result_set_flag = 0;
 | |
|     double p = sample_uniform(0, 1, seed);
 | |
|     for (int k = 0; k < n_dists; k++) {
 | |
|         if (p < cumsummed_normalized_weights[k]) {
 | |
|             result = samplers[k](seed);
 | |
|             result_set_flag = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (result_set_flag == 0)
 | |
|         result = samplers[n_dists - 1](seed);
 | |
| 
 | |
|     free(cumsummed_normalized_weights);
 | |
|     return result;
 | |
| }
 |