squiggle.c/squiggle.c

378 lines
11 KiB
C

#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#define MAX_ERROR_LENGTH 500
#define EXIT_ON_ERROR 0
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
const float PI = 3.14159265358979323846; // M_PI in gcc gnu99
// Pseudo Random number generator
uint32_t xorshift32(uint32_t* seed)
{
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
// See <https://stackoverflow.com/questions/53886131/how-does-xorshift32-works>
// https://en.wikipedia.org/wiki/Xorshift
// Also some drama: <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>, <https://prng.di.unimi.it/>
uint32_t x = *seed;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return *seed = x;
}
// Distribution & sampling functions
// Unit distributions
float sample_unit_uniform(uint32_t* seed)
{
// samples uniform from [0,1] interval.
return ((float)xorshift32(seed)) / ((float)UINT32_MAX);
}
float sample_unit_normal(uint32_t* seed)
{
// See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
float u1 = sample_unit_uniform(seed);
float u2 = sample_unit_uniform(seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
// Composite distributions
float sample_uniform(float from, float to, uint32_t* seed)
{
return sample_unit_uniform(seed) * (to - from) + from;
}
float sample_normal(float mean, float sigma, uint32_t* seed)
{
return (mean + sigma * sample_unit_normal(seed));
}
float sample_lognormal(float logmean, float logsigma, uint32_t* seed)
{
return expf(sample_normal(logmean, logsigma, seed));
}
float sample_to(float low, float high, uint32_t* seed)
{
// Given a (positive) 90% confidence interval,
// returns a sample from a lognormal
// with a matching 90% c.i.
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
float logmean = (loglow + loghigh) / 2;
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return sample_lognormal(logmean, logsigma, seed);
}
float sample_gamma(float alpha, uint32_t* seed)
{
// A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
// see also the references/ folder
if (alpha >= 1) {
float d, c, x, v, u;
d = alpha - 1.0 / 3.0;
c = 1.0 / sqrt(9.0 * d);
while (1) {
do {
x = sample_unit_normal(seed);
v = 1.0 + c * x;
} while (v <= 0.0);
v = pow(v, 3);
u = sample_unit_uniform(seed);
if (u < 1.0 - 0.0331 * pow(x, 4)) { // Condition 1
// the 0.0331 doesn't inspire much confidence
// however, this isn't the whole story
// by knowing that Condition 1 implies condition 2
// we realize that this is just a way of making the algorithm faster
// i.e., of not using the logarithms
return d * v;
}
if (log(u) < 0.5 * pow(x, 2) + d * (1.0 - v + log(v))) { // Condition 2
return d * v;
}
}
} else {
return sample_gamma(1 + alpha, seed) * pow(sample_unit_uniform(seed), 1 / alpha);
// see note in p. 371 of https://dl.acm.org/doi/pdf/10.1145/358407.358414
}
}
float sample_beta(float a, float b, uint32_t* seed)
{
float gamma_a = sample_gamma(a, seed);
float gamma_b = sample_gamma(b, seed);
return gamma_a / (gamma_a + gamma_b);
}
// Array helpers
float array_sum(float* array, int length)
{
float sum = 0.0;
for (int i = 0; i < length; i++) {
sum += array[i];
}
return sum;
}
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
{
array_cumsummed[0] = array_to_sum[0];
for (int i = 1; i < length; i++) {
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
}
}
float array_mean(float* array, int length)
{
float sum = array_sum(array, length);
return sum / length;
}
float array_std(float* array, int length)
{
float mean = array_mean(array, length);
float std = 0.0;
for (int i = 0; i < length; i++) {
std += pow(array[i] - mean, 2.0);
}
std = sqrt(std / length);
return std;
}
// Mixture function
float sample_mixture(float (*samplers[])(uint32_t*), float* weights, int n_dists, uint32_t* seed)
{
// You can see a simpler version of this function in the git history
// or in C-02-better-algorithm-one-thread/
float sum_weights = array_sum(weights, n_dists);
float* cumsummed_normalized_weights = (float*)malloc(n_dists * sizeof(float));
cumsummed_normalized_weights[0] = weights[0] / sum_weights;
for (int i = 1; i < n_dists; i++) {
cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
}
float result;
int result_set_flag = 0;
float p = sample_uniform(0, 1, seed);
for (int k = 0; k < n_dists; k++) {
if (p < cumsummed_normalized_weights[k]) {
result = samplers[k](seed);
result_set_flag = 1;
break;
}
}
if (result_set_flag == 0)
result = samplers[n_dists - 1](seed);
free(cumsummed_normalized_weights);
return result;
}
// Sample from an arbitrary cdf
struct box {
int empty;
float content;
char* error_msg;
};
struct box process_error(const char* error_msg, int should_exit, char* file, int line)
{
if (should_exit) {
printf("@, in %s (%d)", file, line);
exit(1);
} else {
char error_msg[MAX_ERROR_LENGTH];
snprintf(error_msg, MAX_ERROR_LENGTH, "@, in %s (%d)", file, line);
struct box error = { .empty = 1, .error_msg = error_msg };
return error;
}
}
// Inverse cdf at point
// Two versions of this function:
// - raw, dealing with cdfs that return floats
// - input: cdf: float => float, p
// - output: Box(number|error)
// - box, dealing with cdfs that return a box.
// - input: cdf: float => Box(number|error), p
// - output: Box(number|error)
struct box inverse_cdf_float(float cdf(float), float p)
{
// given a cdf: [-Inf, Inf] => [0,1]
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
float low = -1.0;
float high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
int low_condition = (cdf(low) < p);
int high_condition = (p < cdf(high));
if (low_condition && high_condition) {
interval_found = 1;
} else if (!low_condition) {
low = low * 2;
} else if (!high_condition) {
high = high * 2;
}
}
if (!interval_found) {
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
} else {
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
float mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// float width = high - low;
// if ((width < 1e-8) || mid_not_new){
if (mid_not_new) {
convergence_condition = 1;
} else {
float mid_sign = cdf(mid) - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
high = mid;
} else if (mid_sign == 0) {
low = mid;
high = mid;
}
}
}
if (convergence_condition) {
struct box result = { .empty = 0, .content = low };
return result;
} else {
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
}
}
}
struct box inverse_cdf_box(struct box cdf_box(float), float p)
{
// given a cdf: [-Inf, Inf] => Box([0,1])
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
float low = -1.0;
float high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
struct box cdf_low = cdf_box(low);
if (cdf_low.empty) {
return PROCESS_ERROR(cdf_low.error_msg);
}
struct box cdf_high = cdf_box(high);
if (cdf_high.empty) {
return PROCESS_ERROR(cdf_low.error_msg);
}
int low_condition = (cdf_low.content < p);
int high_condition = (p < cdf_high.content);
if (low_condition && high_condition) {
interval_found = 1;
} else if (!low_condition) {
low = low * 2;
} else if (!high_condition) {
high = high * 2;
}
}
if (!interval_found) {
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
} else {
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
float mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// float width = high - low;
if (mid_not_new) {
// if ((width < 1e-8) || mid_not_new){
convergence_condition = 1;
} else {
struct box cdf_mid = cdf_box(mid);
if (cdf_mid.empty) {
return PROCESS_ERROR(cdf_mid.error_msg);
}
float mid_sign = cdf_mid.content - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
high = mid;
} else if (mid_sign == 0) {
low = mid;
high = mid;
}
}
}
if (convergence_condition) {
struct box result = { .empty = 0, .content = low };
return result;
} else {
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
}
}
}
// Sampler based on inverse cdf and randomness function
struct box sampler_cdf_box(struct box cdf(float), uint32_t* seed)
{
float p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
return result;
}
struct box sampler_cdf_float(float cdf(float), uint32_t* seed)
{
float p = sample_unit_uniform(seed);
struct box result = inverse_cdf_float(cdf, p);
return result;
}
/* Could also define other variations, e.g.,
float sampler_danger(struct box cdf(float), uint32_t* seed)
{
float p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
if(result.empty){
exit(1);
}else{
return result.content;
}
}
*/