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We offer a procedure for generating a gamma variate as the cube of a suitably scaled normal
variate. It is fast and simple, assuming one has a fast way to generate normal variables. In
brief: generate a normal variate x and a uniform variate U until ln~U ! , 0.5x2 1 d 2 dv
1 dln~v!, then return dv. Here, the gamma parameter is a $ 1, and v 5 ~1 1 x / Î9d!3,
with d 5 a 2 1 / 3. The efficiency is high, exceeding 0.951, 0.981, 0.992, 0.996 at a 5 1, 2,
4, 8. The procedure can be made to run faster by means of a simple squeeze that avoids the
two logarithms most of the time: return dv if U , 1 2 0.0331x4. We give a short C program
for any a $ 1, and show how to boost an a , 1 into an a . 1. The gamma procedure is
particularly fast for C implementation if the normal variate is generated in-line, via the
#define feature. We include such an inline version, based on our ziggurat method. With it, and
an inline uniform generator, gamma variates can be produced in 400MHz CPUs at better than
1.3 million per second, with the parameter a changing from call to call.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Soft-
ware; I.6 [Computing Methodologies]: Simulation and Modeling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Random number generation, gamma distribution, ziggu-
rat method

1. INTRODUCTION
Along with the normal and exponential, the gamma is one of the most
important distributions in probability and statistics. The standard gamma
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variate has density ya21e2y / G~a!, y . 0. Because simple functions of such
gamma variates can easily provide many of the important variates for
simulations—chi-square, t, F, beta, Dirichlet—a very fast and simple
method for generating gamma variates would be a desirable element in the
toolbox of Monte Carlo researchers.

We offer such a one here, based on the assumption that one already has
another essential element in that toolbox—a fast procedure for generating
standard normal variates x. A gamma variate can then be simply and
quickly generated as dv, with d 5 a 2 1 / 3 and v 5 ~1 1 x /Î9d!3:

generate normal x and uniform U

until ln~U ! , 0.5x2 1 d 2 dv 1 dln~v!,

then return dv.

The efficiency of the rejection method exceeds 0.951, 0.973, 0.982, 0.989 for
a 5 1, 1.5, 2, 3, and 0.9971 for a 5 10 and 0.9997 for a 5 100. (The
method is not feasible for a , 1, but it is easy to boost the parameter from
a to a11; see the note below.) The two logarithms in the rejection test are
fast enough on modern machines that, as it stands, the method is very fast.
But with a simple squeeze we can avoid the logarithms most of the time,
and make it faster.

Devroye [1986] summarizes many of the methods for generating gamma
and other random variables. Of the gamma methods published before or
after Devroye’s book, we compared those of Ahrens and Dieter [1982],
Cheng and Feast [1979], Minh [1988], and Schmeiser and Lal [1980]. We
also compared with one based on applying the Monty Python method to
transformed gamma densities [Marsaglia and Tsang 1998a; 1998b]. The
Monty Python method has nearly the speed of the method we give here, but
is more complicated. The Ahrens-Dieter [1982] method is also quite fast
when using our inline RNOR, but the algorithm is also very complicated.
Exact comparisons depend on the platform, language, compiler, uniform
and/or normal generator, etc. And the claim for simplicity is based, of
course, on the assumption that one has that desirable element of any
Monte Carloist’s toolbox: a quick and easy normal generator. Some time
comparisons are in Section 7.

2. THE NEW METHOD

We want to generate random variables with the gamma density ya21e2y / G~a!,
with parameter a $ 1. Let

h~x! 5 d~1 1 cx!3

for
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21 /c , x , `,

with

d 5 a 2 1 /3, c 5 1 /Î9d.

If we generate a random variable X with density h~x!a21e2h~x!h9~x! / G~a!,
then Y 5 h~ X ! will have the density ya21e2y / G~a!. This is Marsaglia’s
exact-approximation method [Marsaglia 1984], which we use here to pro-
vide a gamma variate via the third power of a normal variate.

If a very fast normal generator is available, we should get a gamma
variate without much more difficulty than that for the normal variate
itself. (Every serious Monte Carloist should have a fast normal generator.
We provide leads to fast and very fast normal generators in Section 6.)

Since we will be dealing with a simple rejection method, that nuisance
constant G~a! will cancel in comparing functional values, and we need not
bother with it from this point on.

After simplifying h~x!a21e2h~x!h9~x!, ignoring constant factors, and put-
ting everything into exponential form, we want to generate a random
variable whose density is some normalizing constant times eg~x!, where

g~x! 5 dln~~1 1 cx!3! 2 d~1 1 cx!3 1 d,

d 5 a 2 1 /3,

c 5 1 /Î9d, 21 /c , x , `.

As with G~a!, the normalizing constant cancels in our application of the
rejection method, and need not be mentioned again. The extra d is put into
g to make eg~0! 5 1.

2.1 Justification

Our method is based on this property of (and the reason for) our choice for
g~x!: with a $ 1,

eg~x! # e20.5x2

, 21 /c , x , `.

That is, eg~x! can be put under the (unscaled) normal density e20.5x2

, and
furthermore, is quite close to it, occupying some 95.2% of the area at a 5
1 to 99.7% at a 5 10. A plot of eg~x! and the dominating e20.5x2

is in Figure
1, for a 5 1, 2, 4.

It is evident that the efficiency of a rejection procedure will be quite high.
An exact measure of the efficiency is E

21/c
` eg~x!dx /E2`

` e20.5x2

dx, which has
(rounded) values 0.95167, 0.98166, 0.99203, 0.99628 for a 5 1, 2, 4, 8,
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easily obtained to that accuracy by numerical integration, or by expanding
the integrand of the numerator and integrating term by term.

Another feature of our choice of g and the dominating normal curve is
that we have Ue20.5x2

, eg~x! if, and only if, ln~U ! 2 0.5x2 , g~x!. This
avoids the exponential function by using ln~U ! in the rejection method;
logarithms are faster than calls to exp(). Furthermore, a very fast exponen-
tial variate generator might be used, rather than ln~U !, to make the
acceptance test. But the squeeze test developed below virtually eliminates
the use of logarithms. Since it requires U, the exponential option is not
worth exploring.

To prove that e20.5x2

$ eg~x! for 21 / c , x , `, it suffices to prove that
w~x! 5 20.5x2 2 g~x! $ 0. A little algebra will verify that ~1 1
cx!w9~x! 5 c2x3 / 3 and ~1 1 cx!2w99~x! 5 c2x2 1 2c3x3 / 3. Thus w~x! is
U-shaped, with minimum zero at x 5 0.

2.2 Motivation

This paragraph explains the choice of h~x!. We begin with a question: what
choice of d, c, and k in h~x! 5 d~1 1 cx!k will make h~x!a21h9~x!e2h~x! / G~a!
nearly a normal density? With normalizing constants ignored, an answer is
provided by the following: choose d, c, and k so that

f~x! 5 eg~x! 5 e~ka21!ln~11cx!2d~11cx!k1d 5 e2
1
2x21a3x31a4x41· · ·,

with a3 and a4 small. The choices d 5 a 2 1 / k, c 5 1 /Îk2a 2 k will do
it. With those choices, f becomes

f~x! 5 e2
1
2x22

~k23!c
6 x32

~k226k111!c2

24 x41· · ·.

Evidently k 5 3, d 5 a 2 1 / 3, and c 5 1 /Î9a 2 3 are good choices,
and the ones we use. But k 5 4 or k 5 8 are also interesting choices that
still make computing ~1 1 cx!k easy. The g in the algorithm and used in
Figure 1 is based on the choices k 5 3, d 5 a 2 1 / 3, and c 5 1 /Î9a 2 3.

3. THE ALGORITHM

Even without squeezing eg~x! from below, we have a simple and fast method
for generating a gamma variate with parameter a $ 1:

Fig. 1. The densities eg~x! with dominating e20.5x2

for a 5 1, 2, 4.
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(1) Setup: d 5a-1/3, c 51/sqrt(9d) .

(2) Generate: v 5(1 1c*x)ˆ3, with x standard normal .

(3) if v .0 and log(UNI) , 0.5*xˆ2 1d-d*v 1d*log(v) return d*v .

(4) go back to step 2 .

3.1 Squeezes

While the above method is simple and fast, it is worth considering how we
might avoid the two logarithms, as they account for a significant part of the
average running time. The direct rejection procedure chooses a uniform
point ~x, Ue20.5x2

! under the curve e20.5x2

, then keeps x if Ue20.5x2

, eg~x!.
We can improve on this with the squeeze method of Marsaglia [1977]: find
an easy-to-test squeeze function s~x! such that

s~x! # eg~x! # e20.5x2

and then accept x if Ue20.5x2

# s~x!.
We have found a promising squeeze function:

s~x! 5 ~1 2 0.0331x4!e20.5x2

.

In that form s~x! is not very easy to evaluate; however, the exponential
parts cancel in the comparison, and only the ~1 2 0.0331x4! part is
needed.

0

1

-2 2
x

Fig. 2. The squeeze for a 5 2, s~x! # eg~x! # e20.5x2

.
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Figure 2 shows s~x! # eg~x! # e20.5x2

for a 5 2. The three curves s~x!,
eg~x!, e20.5x2

are very close over regions for which a normal x appears most of
the time. Note that s~x! is negative for ?x? . r 5 0.033121/4 5
2.344 . . . ; so the squeeze is surely wasted there, but normal x ’s seldom
fall there. The squeeze ratio (area s/area eg~x!) for the choice 0.0331 in s is
about 0.9638 at a 5 1, then decreasing with larger alpha—for example,
about 0.9199 at a 5 10, 0.9185 at a 5 20, and 0.91748 at a 5 100.
The tighter squeeze for low a partly compensates for the lower efficiency
there, causing the final algorithm to have nearly constant average time for
all a $ 1.

A proof that s is a proper squeeze may be provided by a sequence of steps
as follows:

(1) For fixed a $ 1 and for each x . 0, eg~2x! # eg~x!. Thus, since s~x! is
symmetric, it suffices to show that s~x! # eg~2x! for 1 # a and 0 , x
, r. (With w 5 @~1 2 cx! / ~1 1 cx!#3, eg~2x!2g~x! becomes ed@ln~w!2w#, and
the exponent is negative for w , 1.)

(2) For fixed x in 0 , x , r, eg~2x! is an increasing function of a for 1 #

a , `. That is, the domination of eg~x! over any purported s~x! gets
better as a increases, so the worse case is at a 5 1. (Substitute z 5

x /Î9a 2 3 in eg~2x! to get ex2h~z!/9, with h~z! 5 @ln~~1 2 z!3! 2 ~1 2 z!3

1 1# / z2, and then note that h~z! is decreasing for 0 , z , 1.)

(3) Now let a 5 1 and D~t! 5 e2t1t212t3/312ln~12t!2ln~121.1916t4!, obtained from
eg~x!1x2/ 2 / ~1 2 0.0331x4! by substituting x 5 2t / c then simplifying to
a single exponential form. We may verify that s is a proper squeeze by
showing that half the exponent in D~t!

E~t! 5 t 1 t2 /2 1 t3 /3 1 ln~1 2 t! 2 ln~1 2 1.1916t4! /2,

is positive for 0 , t , t0 5 1.191620.25 5 0.97512 · · ·. A plot of E~t!
for 0 , t , t0 is in Figure 3.

To prove that E~t! is positive in ~0, t0!, we note that E~0! 5 0 and look
at the derivative, E9~t!, which can be represented as a ratio of polynomials
with numerator t3~1.3832 2 2.3832t 1 1.1916t4!. The quartic has two
real roots 0.7014303105 and 0.8793253979 and two complex roots
20.7903778542 61.121296558i (to 10 places). At the real roots, E~t! is
positive, and thus positive for 0 , t , t0. As the figure indicates, E has a
relative maximum at the first root and a relative minimum at the second.

4. THE FINAL ALGORITHM

Here is an expanded version of the above outline, with the squeeze-
motivated test used to bypass the two logarithms. (For lack of Greek letters
in most computer languages, a is represented by a).
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(1) Setup: d 5a-1/3, c 51/sqrt(9d) .

(2) Generate v 5(1 1cx)ˆ3 with x normal. Repeat if v ,50 [rare;
requires x , -sqrt(9a-3)] .

(3) Generate uniform U .

(4) If U , 1-0.0331*xˆ4 return d*v .

(5) If log(U) ,0.5*xˆ2 1d*(1-v 1log(v)) return d*v .

(6) Go to step 2 .

Note that the setup is only required if a is changed from call to call. For
repeated calls with a fixed, this algorithm is very fast. Changing a ’s impose
the added cost of a square root and a division.

5. IMPLEMENTATION IN C

The procedure listed below uses RNOR, which provides a standard normal
where it occurs in an expression, and UNI, which provides a uniform (0,1)
variate. Both are inline functions based on the #define feature of C, and are
described in detail below. Assuming the availability of RNOR and UNI, this
little procedure will provide gamma variates with parameter a:

float rgama(float a) {
float d,c,x,v,u;
d5a-1./3.; c 51./sqrt(9.*d);
for(;;) do {x 5RNOR; v51. 1c*x;} while(v ,50.);

v5v*v*v; u 5UNI;
if( u ,1.-.0331*(x*x)*(x*x) ) return (d*v);
if( log(u) ,0.5*x*x 1d*(1.-v 1log(v)) ) return (d*v); }

}

6. PROVIDING THE NECESSARY UNIFORM AND NORMAL VARIATES

Generation of the necessary uniform and normal variates in the gamma
routine itself avoids the necessary overhead costs of seperate routines. The

0

0.02

0.2 0.4 0.6 0.8
t

Fig. 3. E~t!: half the exponent in eg~x!1x2/ 22ln~120.0331x4! after setting x 5 2t / c.
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time needed for a normal variate is the major determinant of speed for this
algorithm. The fastest normal generators we know of are based on the
ziggurat method of Marsaglia and Tsang [1984; 2000]. Another fast normal
generator is based on our Monty Python Method [Marsaglia and Tsang
1998a]. And the Ahrens-Dieter [1989] method is also a fast normal genera-
tor that might be used. In terms of both speed and size, we have chosen to
use a new implementation of our ziggurat method [Marsaglia and Tsang
2000], providing the required RNOR most of the time in-line, in C. The C
programming language allows this to be done via its define feature.

For our uniform generator, we use an inline UNI, based on SHR3,
[Marsaglia 1996]), a very fast integer generator that adds two successive
terms of the 3-shift shift register generator with left shift 13, right shift 17,
left shift 5. We have found it to be one of the fastest that seem to pass all
the tests in Marsaglia [1996] and not need tables. Complete listings for the
inline generators UNI and RNOR follow. The variables are “float,” assumed
single-precision 32-bit IEEE arithmetic, which seems adequate for most
Monte Carlo work. But the ziggurat tables are developed using double
precision; for more precision, refer to their development in Marsaglia and
Tsang [2000].

#define SHR3 (jz 5jsr, jsrˆ 5(jsr ,,13), jsrˆ 5(jsr ..17),\
jsrˆ 5(jsr ,,5), jz 1jsr)
#define UNI (SHR3*0.2328306e-9)
#define RNOR (hz 5SHR3, iz 5hz&127, (abs(hz)[iz])? hz*wn[iz]: nfix())
static unsigned long iz,jz,jsr 5349576937,kn[128]; static long hz;
static float wn[128],fn[128];

float nfix(void) /* nfix() provides RNOR if inline cannot */ {
const float r 5 3.713086f;
static float x,y;
for(;;) x 5hz*wn[iz];

if(iz 550) { if( UNI* 0.002669629 , exp(-0.5*x*x) ) return x;
do{x 5-log(UNI)*0.2693178; y 5-log(UNI); } while(y 1y,x*x);

return ( (hz .0)? r 1x: -r-x ); }
if( fn[iz] 1UNI*(fn[iz-1]-fn[iz]) , exp(-0.5*x*x) )

return x;
/* start all over */

hz5SHR3; iz 5hz&127; if(abs(hz) ,kn[iz]) return (hz*wn[iz]);
} }

/*--------This procedure sets the seed and creates the tables------*/
void zigset(unsigned long jsrseed)

const double m1 5 2147483648.0;
double dn 53.442619855899,tn 5dn,vn 59.91256303526217e-3, q;

int i; jsr 5jsrseed;
q5vn/exp(-0.5*dn*dn);
kn[0] 5(dn/q)*m1; kn[1] 50;
wn[0] 5q/m1; wn[127] 5dn/m1;
fn[0] 51.; fn[127] 5exp(-0.5*dn*dn);
for(i 5126;i .51;i--) {

dn5sqrt(-2.*log(vn/dn 1exp(-0.5*dn*dn)));
kn[i 11] 5(dn/tn)*m1; tn 5dn;
fn[i] 5exp(-0.5*dn*dn); wn[i] 5dn/m1; } }
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Note. For the rare cases when a ga variate is required for a , 1, one
can use ga 5 g11aU 1/a with U uniform (0,1), and still have a method faster
than any we know of. To prove the gamma assertion: the product of the
characteristic function of ln~ga11! and the characteristic function of
ln~U ! / a is the characteristic function of ln~ga!.

7. TIMING RESULTS

We conclude with a table showing average times for calls to the above
algorithm and to those of Ahrens-Dieter [1982], Cheng-Feast [1979],
Schmeiser and Lal [1980], and Minh [1988], as well as for our Monty
Python gamma method [Marsaglia and Tsang 1998b].

There are two times for each a of 1, 2, 4, 8, and 16 (actually, a

1 0.0001 because some methods will not work for a 5 1 and because
some compilers provide Îa much faster if a is exactly 1, 4, or 16—perfect
squares?). For given a, the faster time assumes the parameters have been
assigned before repeated calls.

Times are in nanoseconds, coming from 20 million calls in a 488MHz
Pentium III desktop using gcc in MS-DOS. But we also timed the routines
on other machines and found the relative speeds much the same. Note that
in order that comparisons be fairly made all the methods used the inline
uniform generator UNI, based on the fast SHR3 and, when required, the
fast inline normal generator RNOR described above.
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