#include "../squiggle.h" #include "../squiggle_more.h" #include #include #include #include double sample_loguniform(double a, double b, uint64_t* seed){ return exp(sample_uniform(log(a), log(b), seed)); } int main() { // set randomness seed uint64_t* seed = malloc(sizeof(uint64_t)); *seed = UINT64_MAX/64; // xorshift can't start with a seed of 0 double fermi_naive(uint64_t* seed){ double rate_of_star_formation = sample_loguniform(1,100, seed); double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed); double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed); double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed); double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets); // double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets); // but with more precision double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed); double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed); double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed); // printf(" rate_of_star_formation = %lf\n", rate_of_star_formation); // printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets); // printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system); // printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets); // printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears); // printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears); // printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such); // printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations); // Expected number of civilizations in the Milky way; // see footnote 3 (p. 5) double n = rate_of_star_formation * fraction_of_stars_with_planets * number_of_habitable_planets_per_star_system * fraction_of_habitable_planets_in_which_any_life_appears * fraction_of_planets_with_life_in_which_intelligent_life_appears * fraction_of_intelligent_planets_which_are_detectable_as_such * longevity_of_detectable_civilizations; return n; } double fermi_paradox_naive(uint64_t* seed){ double n = fermi_naive(seed); return (n > 1 ? 1 : 0); } double result; for(int i=0; i<1000; i++){ result = fermi_naive(seed); printf("result from fermi_naive: %lf\n", result); printf("\n\n"); } printf("result from naïve implementation: %lf\n", result); // Thinking in log space double fermi_logspace(uint64_t* seed){ double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed); double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed); double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed); double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed); double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed); double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed); // printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation); // printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets); // printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system); // printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears); // printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such); // printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations); double log_n1 = log_rate_of_star_formation + log_fraction_of_stars_with_planets + log_number_of_habitable_planets_per_star_system + log_fraction_of_planets_with_life_in_which_intelligent_life_appears + log_fraction_of_intelligent_planets_which_are_detectable_as_such + log_longevity_of_detectable_civilizations; printf("first part of calculation: %lf\n", log_n1); /* Consider fraction_of_habitable_planets_in_which_any_life_appears separately. Imprecisely, we could do: double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed); double fraction_of_habitable_planets_in_which_any_life_appears = 1- exp(-rate_of_life_formation_in_habitable_planets); double log_fraction_of_habitable_planets_in_which_any_life_appears = log(1-fraction_of_habitable_planets_in_which_any_life_appears); double n = exp(log_n1) * fraction_of_habitable_planets_in_which_any_life_appears; // or: double n2 = exp(log_n1 + log(fraction_of_habitable_planets_in_which_any_life_appears)) However, we lose all precision here. Now, say a = underlying normal b = rate_of_life_formation_in_habitable_planets = exp(underlying normal) c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears d = log(c) Now, is there some way we can d more efficiently/precisely? Turns out there is! Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc. When b ~ 0 (as it is), this is close to b. But now, if b ~ 0 c ~ b and d = log(c) ~ log(b) = log(exp(a)) = a */ double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed); printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets); double log_fraction_of_habitable_planets_in_which_any_life_appears; if(log_rate_of_life_formation_in_habitable_planets < -32){ log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets; } else{ double rate_of_life_formation_in_habitable_planets = exp(log_rate_of_life_formation_in_habitable_planets); double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets); log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears); } printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears); double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears; return log_n; } double result2; /* for(int i=0; i<1000; i++){ result2 = fermi_logspace(seed); printf("result from logspace implementation: %lf.2\n", result2); printf("\n\n"); } */ free(seed); }