#include "../../../squiggle.h" #include "../../../squiggle_more.h" #include #include #include double probability_of_dying_nuno(uint64_t* seed) { double first_year_russian_nuclear_weapons = 1953; double current_year = 2022; double laplace_probability_nuclear_exchange_year = sample_beta(1, current_year - first_year_russian_nuclear_weapons + 1, seed); double laplace_probability_nuclear_exchange_month = 1 - pow(1 - laplace_probability_nuclear_exchange_year, (1.0 / 12.0)); double london_hit_conditional_on_russia_nuclear_weapon_usage = sample_beta(7.67, 69.65, seed); // I.e., a beta distribution with a range of 0.05 to 0.16 into: https://nunosempere.com/blog/2023/03/15/fit-beta/ // 0.05 were my estimate and Samotsvety's estimate in March 2022, respectively: // https://forum.effectivealtruism.org/posts/KRFXjCqqfGQAYirm5/samotsvety-nuclear-risk-forecasts-march-2022#Nu_o_Sempere double informed_actor_not_able_to_escape = sample_beta(3.26212166586967, 3.26228162008564, seed); // 0.2 to 0.8, i.e., 20% to 80%, again using the previous tool double proportion_which_die_if_bomb_drops_in_london = sample_beta(10.00, 2.45, seed); // 60% to 95% double probability_of_dying = laplace_probability_nuclear_exchange_month * london_hit_conditional_on_russia_nuclear_weapon_usage * informed_actor_not_able_to_escape * proportion_which_die_if_bomb_drops_in_london; return probability_of_dying; } double probability_of_dying_eli(uint64_t* seed) { double russia_nato_nuclear_exchange_in_next_month = sample_beta(1.30, 1182.99, seed); // .0001 to .003 double london_hit_conditional = sample_beta(3.47, 8.97, seed); // 0.1 to 0.5 double informed_actors_not_able_to_escape = sample_beta(2.73, 5.67, seed); // .1 to .6 double proportion_which_die_if_bomb_drops_in_london = sample_beta(3.00, 1.46, seed); // 0.3 to 0.95; double probability_of_dying = russia_nato_nuclear_exchange_in_next_month * london_hit_conditional * informed_actors_not_able_to_escape * proportion_which_die_if_bomb_drops_in_london; return probability_of_dying; } double sample_nuclear_model(uint64_t* seed) { double (*samplers[])(uint64_t*) = { probability_of_dying_nuno, probability_of_dying_eli }; double weights[] = { 0.5, 0.5 }; return sample_mixture(samplers, weights, 2, seed); } int main() { // set randomness seed uint64_t* seed = malloc(sizeof(uint64_t)); *seed = 1000; // xorshift can't start with 0 int n = 1 * MILLION; double* xs = malloc(sizeof(double) * (size_t)n); for (int i = 0; i < n; i++) { xs[i] = sample_nuclear_model(seed); } printf("\n# Stats\n"); array_print_stats(xs, n); printf("\n# Histogram\n"); array_print_90_ci_histogram(xs, n, 20); free(xs); free(seed); }