Compare commits

...

10 Commits

22 changed files with 668 additions and 247 deletions

View File

@ -11,7 +11,8 @@ A self-contained C99 library that provides a subset of [Squiggle](https://www.sq
- Because it can fit in my head
- Because if you can implement something in C, you can implement it anywhere else
- Because it can be made faster if need be
- e.g., with a multi-threading library like OpenMP, or by adding more algorithmic complexity
- e.g., with a multi-threading library like OpenMP,
- or by implementing faster but more complex algorithms
- or more simply, by inlining the sampling functions (adding an `inline` directive before their function declaration)
- **Because there are few abstractions between it and machine code** (C => assembly => machine code with gcc, or C => machine code, with tcc), leading to fewer errors beyond the programmer's control.
@ -68,7 +69,7 @@ This library provides two approaches:
```C
struct box {
int empty;
float content;
double content;
char* error_msg;
};
```
@ -131,9 +132,9 @@ int main(){
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with a seed of 0
float a = sample_to(1, 10, seed);
float b = 2 * a;
float c = b / a;
double a = sample_to(1, 10, seed);
double b = 2 * a;
double c = b / a;
printf("a: %f, b: %f, c: %f\n", a, b, c);
// a: 0.607162, b: 1.214325, c: 0.500000
@ -153,7 +154,7 @@ vs
#include <stdlib.h>
#include <stdio.h>
float draw_xyz(uint64_t* seed){
double draw_xyz(uint64_t* seed){
// function could also be placed inside main with gcc nested functions extension.
return sample_to(1, 20, seed);
}
@ -164,9 +165,9 @@ int main(){
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with a seed of 0
float a = draw_xyz(seed);
float b = 2 * draw_xyz(seed);
float c = b / a;
double a = draw_xyz(seed);
double b = 2 * draw_xyz(seed);
double c = b / a;
printf("a: %f, b: %f, c: %f\n", a, b, c);
// a: 0.522484, b: 10.283501, c: 19.681936
@ -175,6 +176,66 @@ int main(){
}
```
### Tests and the long tail of the lognormal
Distribution functions can be tested with:
```sh
cd tests
make && make run
```
`make verify` is an alias that runs all the tests and just displays the ones that are failing.
These tests are somewhat rudimentary: they get between 1M and 10M samples from a given sampling function, and check that their mean and standard deviations correspond to what they should theoretically should be.
If you run `make run` (or `make verify`), you will see errors such as these:
```
[-] Mean test for normal(47211.047473, 682197.019012) NOT passed.
Mean of normal(47211.047473, 682197.019012): 46933.673278, vs expected mean: 47211.047473
delta: -277.374195, relative delta: -0.005910
[-] Std test for lognormal(4.584666, 2.180816) NOT passed.
Std of lognormal(4.584666, 2.180816): 11443.588861, vs expected std: 11342.434900
delta: 101.153961, relative delta: 0.008839
[-] Std test for to(13839.861856, 897828.354318) NOT passed.
Std of to(13839.861856, 897828.354318): 495123.630575, vs expected std: 498075.002499
delta: -2951.371925, relative delta: -0.005961
```
These tests I wouldn't worry about. Due to luck of the draw, their relative error is a bit over 0.005, or 0.5%, and so the test fails. But it would surprise me if that had some meaningful practical implication.
The errors that should raise some worry are:
```
[-] Mean test for lognormal(1.210013, 4.766882) NOT passed.
Mean of lognormal(1.210013, 4.766882): 342337.257677, vs expected mean: 288253.061628
delta: 54084.196049, relative delta: 0.157985
[-] Std test for lognormal(1.210013, 4.766882) NOT passed.
Std of lognormal(1.210013, 4.766882): 208107782.972184, vs expected std: 24776840217.604111
delta: -24568732434.631927, relative delta: -118.057730
[-] Mean test for lognormal(-0.195240, 4.883106) NOT passed.
Mean of lognormal(-0.195240, 4.883106): 87151.733198, vs expected mean: 123886.818303
delta: -36735.085104, relative delta: -0.421507
[-] Std test for lognormal(-0.195240, 4.883106) NOT passed.
Std of lognormal(-0.195240, 4.883106): 33837426.331671, vs expected std: 18657000192.914921
delta: -18623162766.583248, relative delta: -550.371727
[-] Mean test for lognormal(0.644931, 4.795860) NOT passed.
Mean of lognormal(0.644931, 4.795860): 125053.904456, vs expected mean: 188163.894101
delta: -63109.989645, relative delta: -0.504662
[-] Std test for lognormal(0.644931, 4.795860) NOT passed.
Std of lognormal(0.644931, 4.795860): 39976300.711166, vs expected std: 18577298706.170452
delta: -18537322405.459286, relative delta: -463.707799
```
What is happening in this case is that you are taking a normal, like `normal(-0.195240, 4.883106)`, and you are exponentiating it to arrive at a lognormal. But `normal(-0.195240, 4.883106)` is going to have some noninsignificant weight on, say, 18. But `exp(18) = 39976300`, and points like it are going to end up a nontrivial amount to the analytical mean and standard deviation, even though they have little probability mass.
Fortunately, the reader can also check that for more plausible real-world values, like the
## Related projects
- [Squiggle](https://www.squiggle-language.com/)
@ -184,16 +245,10 @@ int main(){
## To do list
- [ ] Test summary statistics for each of the distributions.
- [ ] Have some more complicated & realistic example
- [ ] Add summarization functions: 90% ci (or all c.i.?)
- [ ] Systematize references
- [ ] Publish online
- [ ] Add efficient sampling from a beta distribution
- https://dl.acm.org/doi/10.1145/358407.358414
- https://link.springer.com/article/10.1007/bf02293108
- https://stats.stackexchange.com/questions/502146/how-does-numpy-generate-samples-from-a-beta-distribution
- https://github.com/numpy/numpy/blob/5cae51e794d69dd553104099305e9f92db237c53/numpy/random/src/distributions/distributions.c
- [ ] Support all distribution functions in <https://www.squiggle-language.com/docs/Api/Dist>
- [ ] Support all distribution functions in <https://www.squiggle-language.com/docs/Api/Dist>, and do so efficiently
@ -224,3 +279,16 @@ int main(){
- https://dl.acm.org/doi/pdf/10.1145/358407.358414
- [x] Explain correlated samples
- [-] ~~Add tests in Stan?~~
- [x] Test summary statistics for each of the distributions.
- [x] For uniform
- [x] For normal
- [x] For lognormal
- [x] For lognormal (to syntax)
- [x] For beta distribution
- [x] Clarify gamma/standard gamma
- [x] Add efficient sampling from a beta distribution
- https://dl.acm.org/doi/10.1145/358407.358414
- https://link.springer.com/article/10.1007/bf02293108
- https://stats.stackexchange.com/questions/502146/how-does-numpy-generate-samples-from-a-beta-distribution
- https://github.com/numpy/numpy/blob/5cae51e794d69dd553104099305e9f92db237c53/numpy/random/src/distributions/distributions.c
- [x] Pontificate about lognormal tests

Binary file not shown.

View File

@ -4,22 +4,22 @@
#include <stdio.h>
// Estimate functions
float sample_0(uint64_t* seed)
double sample_0(uint64_t* seed)
{
return 0;
}
float sample_1(uint64_t* seed)
double sample_1(uint64_t* seed)
{
return 1;
}
float sample_few(uint64_t* seed)
double sample_few(uint64_t* seed)
{
return sample_to(1, 3, seed);
}
float sample_many(uint64_t* seed)
double sample_many(uint64_t* seed)
{
return sample_to(2, 10, seed);
}
@ -29,15 +29,15 @@ int main(){
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with 0
float p_a = 0.8;
float p_b = 0.5;
float p_c = p_a * p_b;
double p_a = 0.8;
double p_b = 0.5;
double p_c = p_a * p_b;
int n_dists = 4;
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
float result_one = sample_mixture(samplers, weights, n_dists, seed);
double result_one = sample_mixture(samplers, weights, n_dists, seed);
printf("result_one: %f\n", result_one);
free(seed);
}

Binary file not shown.

View File

@ -4,22 +4,22 @@
#include "../../squiggle.h"
// Estimate functions
float sample_0(uint64_t* seed)
double sample_0(uint64_t* seed)
{
return 0;
}
float sample_1(uint64_t* seed)
double sample_1(uint64_t* seed)
{
return 1;
}
float sample_few(uint64_t* seed)
double sample_few(uint64_t* seed)
{
return sample_to(1, 3, seed);
}
float sample_many(uint64_t* seed)
double sample_many(uint64_t* seed)
{
return sample_to(2, 10, seed);
}
@ -29,16 +29,16 @@ int main(){
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with 0
float p_a = 0.8;
float p_b = 0.5;
float p_c = p_a * p_b;
double p_a = 0.8;
double p_b = 0.5;
double p_c = p_a * p_b;
int n_dists = 4;
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
int n_samples = 1000000;
float* result_many = (float *) malloc(n_samples * sizeof(float));
double* result_many = (double *) malloc(n_samples * sizeof(double));
for(int i=0; i<n_samples; i++){
result_many[i] = sample_mixture(samplers, weights, n_dists, seed);
}

View File

@ -8,22 +8,22 @@ int main(){
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with 0
float p_a = 0.8;
float p_b = 0.5;
float p_c = p_a * p_b;
double p_a = 0.8;
double p_b = 0.5;
double p_c = p_a * p_b;
int n_dists = 4;
float sample_0(uint64_t* seed){ return 0; }
float sample_1(uint64_t* seed) { return 1; }
float sample_few(uint64_t* seed){ return sample_to(1, 3, seed); }
float sample_many(uint64_t* seed){ return sample_to(2, 10, seed); }
double sample_0(uint64_t* seed){ return 0; }
double sample_1(uint64_t* seed) { return 1; }
double sample_few(uint64_t* seed){ return sample_to(1, 3, seed); }
double sample_many(uint64_t* seed){ return sample_to(2, 10, seed); }
float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
int n_samples = 1000000;
float* result_many = (float *) malloc(n_samples * sizeof(float));
double* result_many = (double *) malloc(n_samples * sizeof(double));
for(int i=0; i<n_samples; i++){
result_many[i] = sample_mixture(samplers, weights, n_dists, seed);
}

View File

@ -8,7 +8,7 @@
#define NUM_SAMPLES 1000000
// Example cdf
float cdf_uniform_0_1(float x)
double cdf_uniform_0_1(double x)
{
if (x < 0) {
return 0;
@ -19,7 +19,7 @@ float cdf_uniform_0_1(float x)
}
}
float cdf_squared_0_1(float x)
double cdf_squared_0_1(double x)
{
if (x < 0) {
return 0;
@ -30,17 +30,17 @@ float cdf_squared_0_1(float x)
}
}
float cdf_normal_0_1(float x)
double cdf_normal_0_1(double x)
{
float mean = 0;
float std = 1;
double mean = 0;
double std = 1;
return 0.5 * (1 + erf((x - mean) / (std * sqrt(2)))); // erf from math.h
}
// Some testers
void test_inverse_cdf_float(char* cdf_name, float cdf_float(float))
void test_inverse_cdf_double(char* cdf_name, double cdf_double(double))
{
struct box result = inverse_cdf_float(cdf_float, 0.5);
struct box result = inverse_cdf_double(cdf_double, 0.5);
if (result.empty) {
printf("Inverse for %s not calculated\n", cdf_name);
exit(1);
@ -49,12 +49,12 @@ void test_inverse_cdf_float(char* cdf_name, float cdf_float(float))
}
}
void test_and_time_sampler_float(char* cdf_name, float cdf_float(float), uint64_t* seed)
void test_and_time_sampler_double(char* cdf_name, double cdf_double(double), uint64_t* seed)
{
printf("\nGetting some samples from %s:\n", cdf_name);
clock_t begin = clock();
for (int i = 0; i < NUM_SAMPLES; i++) {
struct box sample = sampler_cdf_float(cdf_float, seed);
struct box sample = sampler_cdf_double(cdf_double, seed);
if (sample.empty) {
printf("Error in sampler function for %s", cdf_name);
} else {
@ -62,39 +62,39 @@ void test_and_time_sampler_float(char* cdf_name, float cdf_float(float), uint64_
}
}
clock_t end = clock();
float time_spent = (float)(end - begin) / CLOCKS_PER_SEC;
double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
printf("Time spent: %f\n", time_spent);
}
int main()
{
// Test inverse cdf float
test_inverse_cdf_float("cdf_uniform_0_1", cdf_uniform_0_1);
test_inverse_cdf_float("cdf_squared_0_1", cdf_squared_0_1);
test_inverse_cdf_float("cdf_normal_0_1", cdf_normal_0_1);
// Test inverse cdf double
test_inverse_cdf_double("cdf_uniform_0_1", cdf_uniform_0_1);
test_inverse_cdf_double("cdf_squared_0_1", cdf_squared_0_1);
test_inverse_cdf_double("cdf_normal_0_1", cdf_normal_0_1);
// Testing samplers
// set randomness seed
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with 0
// Test float sampler
test_and_time_sampler_float("cdf_uniform_0_1", cdf_uniform_0_1, seed);
test_and_time_sampler_float("cdf_squared_0_1", cdf_squared_0_1, seed);
test_and_time_sampler_float("cdf_normal_0_1", cdf_normal_0_1, seed);
// Test double sampler
test_and_time_sampler_double("cdf_uniform_0_1", cdf_uniform_0_1, seed);
test_and_time_sampler_double("cdf_squared_0_1", cdf_squared_0_1, seed);
test_and_time_sampler_double("cdf_normal_0_1", cdf_normal_0_1, seed);
// Get some normal samples using a previous approach
printf("\nGetting some samples from sample_unit_normal\n");
clock_t begin_2 = clock();
double* normal_samples = malloc(NUM_SAMPLES * sizeof(double));
for (int i = 0; i < NUM_SAMPLES; i++) {
float normal_sample = sample_unit_normal(seed);
normal_samples[i] = sample_unit_normal(seed);
// printf("%f\n", normal_sample);
}
clock_t end_2 = clock();
float time_spent_2 = (float)(end_2 - begin_2) / CLOCKS_PER_SEC;
double time_spent_2 = (double)(end_2 - begin_2) / CLOCKS_PER_SEC;
printf("Time spent: %f\n", time_spent_2);
free(seed);

View File

@ -10,11 +10,11 @@
#define TINY_BETA 1.0e-30
// Incomplete beta function
struct box incbeta(float a, float b, float x)
struct box incbeta(double a, double b, double x)
{
// Descended from <https://github.com/codeplea/incbeta/blob/master/incbeta.c>,
// <https://codeplea.com/incomplete-beta-function-c>
// but modified to return a box struct and floats instead of doubles.
// but modified to return a box struct and doubles instead of doubles.
// [ ] to do: add attribution in README
// Original code under this license:
/*
@ -60,17 +60,17 @@ struct box incbeta(float a, float b, float x)
}
/*Find the first part before the continued fraction.*/
const float lbeta_ab = lgamma(a) + lgamma(b) - lgamma(a + b);
const float front = exp(log(x) * a + log(1.0 - x) * b - lbeta_ab) / a;
const double lbeta_ab = lgamma(a) + lgamma(b) - lgamma(a + b);
const double front = exp(log(x) * a + log(1.0 - x) * b - lbeta_ab) / a;
/*Use Lentz's algorithm to evaluate the continued fraction.*/
float f = 1.0, c = 1.0, d = 0.0;
double f = 1.0, c = 1.0, d = 0.0;
int i, m;
for (i = 0; i <= 200; ++i) {
m = i / 2;
float numerator;
double numerator;
if (i == 0) {
numerator = 1.0; /*First numerator is 1.0.*/
} else if (i % 2 == 0) {
@ -89,7 +89,7 @@ struct box incbeta(float a, float b, float x)
if (fabs(c) < TINY_BETA)
c = TINY_BETA;
const float cd = c * d;
const double cd = c * d;
f *= cd;
/*Check for stop.*/
@ -105,7 +105,7 @@ struct box incbeta(float a, float b, float x)
return PROCESS_ERROR("More loops needed, did not converge, in function incbeta");
}
struct box cdf_beta(float x)
struct box cdf_beta(double x)
{
if (x < 0) {
struct box result = { .empty = 0, .content = 0 };
@ -114,13 +114,13 @@ struct box cdf_beta(float x)
struct box result = { .empty = 0, .content = 1 };
return result;
} else {
float successes = 1, failures = (2023 - 1945);
double successes = 1, failures = (2023 - 1945);
return incbeta(successes, failures, x);
}
}
// Some testers
void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(float))
void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(double))
{
struct box result = inverse_cdf_box(cdf_box, 0.5);
if (result.empty) {
@ -131,7 +131,7 @@ void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(float))
}
}
void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(float), uint64_t* seed)
void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(double), uint64_t* seed)
{
printf("\nGetting some samples from %s:\n", cdf_name);
clock_t begin = clock();
@ -144,7 +144,7 @@ void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(float), uint64
}
}
clock_t end = clock();
float time_spent = (float)(end - begin) / CLOCKS_PER_SEC;
double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
printf("Time spent: %f\n", time_spent);
}

Binary file not shown.

View File

@ -14,15 +14,15 @@ int main()
int n = 1000 * 1000;
/*
for (int i = 0; i < n; i++) {
float gamma_0 = sample_gamma(0.0, seed);
double gamma_0 = sample_gamma(0.0, seed);
// printf("sample_gamma(0.0): %f\n", gamma_0);
}
printf("\n");
*/
float* gamma_1_array = malloc(sizeof(float) * n);
double* gamma_1_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
float gamma_1 = sample_gamma(1.0, seed);
double gamma_1 = sample_gamma(1.0, seed);
// printf("sample_gamma(1.0): %f\n", gamma_1);
gamma_1_array[i] = gamma_1;
}
@ -30,9 +30,9 @@ int main()
free(gamma_1_array);
printf("\n");
float* beta_1_2_array = malloc(sizeof(float) * n);
double* beta_1_2_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
float beta_1_2 = sample_beta(1, 2.0, seed);
double beta_1_2 = sample_beta(1, 2.0, seed);
// printf("sample_beta(1.0, 2.0): %f\n", beta_1_2);
beta_1_2_array[i] = beta_1_2;
}
@ -43,10 +43,3 @@ int main()
free(seed);
}
/*
Aggregation mechanisms:
- Quantiles (requires a sort)
- Sum
- Average
- Std
*/

BIN
examples/07_ci_beta/example Executable file

Binary file not shown.

View File

@ -0,0 +1,21 @@
#include "../../squiggle.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
// Estimate functions
double beta_1_2_sampler(uint64_t* seed){
return sample_beta(1, 2.0, seed);
}
int main()
{
// set randomness seed
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with 0
struct c_i beta_1_2_ci_90 = get_90_confidence_interval(beta_1_2_sampler, seed);
printf("90%% confidence interval of beta(1,2) is [%f, %f]\n", beta_1_2_ci_90.low, beta_1_2_ci_90.high);
free(seed);
}

View File

@ -0,0 +1,53 @@
# Interface:
# make
# make build
# make format
# make run
# Compiler
CC=gcc
# CC=tcc # <= faster compilation
# Main file
SRC=example.c ../../squiggle.c
OUTPUT=example
## Dependencies
MATH=-lm
## Flags
DEBUG= #'-g'
STANDARD=-std=c99
WARNINGS=-Wall
OPTIMIZED=-O3 #-Ofast
# OPENMP=-fopenmp
## Formatter
STYLE_BLUEPRINT=webkit
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
## make build
build: $(SRC)
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(MATH) -o $(OUTPUT)
format: $(SRC)
$(FORMATTER) $(SRC)
run: $(SRC) $(OUTPUT)
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
time-linux:
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
@echo "Running 100x and taking avg time $(OUTPUT)"
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
## Profiling
profile-linux:
echo "Requires perf, which depends on the kernel version, and might be in linux-tools package or similar"
echo "Must be run as sudo"
$(CC) $(SRC) $(MATH) -o $(OUTPUT)
sudo perf record ./$(OUTPUT)
sudo perf report
rm perf.data

View File

@ -11,6 +11,7 @@ all:
cd examples/04_sample_from_cdf_simple && make && echo
cd examples/05_sample_from_cdf_beta && make && echo
cd examples/06_gamma_beta && make && echo
cd examples/07_ci_beta && make && echo
format: squiggle.c squiggle.h
$(FORMATTER) squiggle.c

View File

@ -11,7 +11,7 @@
#define EXIT_ON_ERROR 0
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
const float PI = 3.14159265358979323846; // M_PI in gcc gnu99
const double PI = 3.14159265358979323846; // M_PI in gcc gnu99
// Pseudo Random number generator
uint64_t xorshift32(uint32_t* seed)
@ -35,67 +35,73 @@ uint64_t xorshift64(uint64_t* seed)
// https://en.wikipedia.org/wiki/Xorshift
// Also some drama: <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>, <https://prng.di.unimi.it/>
uint64_t x = *seed;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return *seed = x;
uint64_t x = *seed;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return *seed = x;
}
// Distribution & sampling functions
// Unit distributions
float sample_unit_uniform(uint64_t* seed)
double sample_unit_uniform(uint64_t* seed)
{
// samples uniform from [0,1] interval.
return ((float)xorshift64(seed)) / ((float)UINT64_MAX);
return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
}
float sample_unit_normal(uint64_t* seed)
double sample_unit_normal(uint64_t* seed)
{
// See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
float u1 = sample_unit_uniform(seed);
float u2 = sample_unit_uniform(seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
double u1 = sample_unit_uniform(seed);
double u2 = sample_unit_uniform(seed);
double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
// Composite distributions
float sample_uniform(float start, float end, uint64_t* seed)
double sample_uniform(double start, double end, uint64_t* seed)
{
return sample_unit_uniform(seed) * (end - start) + start;
}
float sample_normal(float mean, float sigma, uint64_t* seed)
double sample_normal(double mean, double sigma, uint64_t* seed)
{
return (mean + sigma * sample_unit_normal(seed));
}
float sample_lognormal(float logmean, float logsigma, uint64_t* seed)
double sample_lognormal(double logmean, double logstd, uint64_t* seed)
{
return expf(sample_normal(logmean, logsigma, seed));
return exp(sample_normal(logmean, logstd, seed));
}
float sample_to(float low, float high, uint64_t* seed)
double sample_to(double low, double high, uint64_t* seed)
{
// Given a (positive) 90% confidence interval,
// returns a sample from a lognormal
// with a matching 90% c.i.
const float NORMAL95CONFIDENCE = 1.6448536269514722;
float loglow = logf(low);
float loghigh = logf(high);
float logmean = (loglow + loghigh) / 2;
float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return sample_lognormal(logmean, logsigma, seed);
const double NORMAL95CONFIDENCE = 1.6448536269514722;
double loglow = logf(low);
double loghigh = logf(high);
double logmean = (loglow + loghigh) / 2;
double logstd = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
return sample_lognormal(logmean, logstd, seed);
}
float sample_gamma(float alpha, uint64_t* seed)
double sample_gamma(double alpha, uint64_t* seed)
{
// A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
// see also the references/ folder
// Note that the Wikipedia page for the gamma distribution includes a scaling parameter
// k or beta
// https://en.wikipedia.org/wiki/Gamma_distribution
// such that gamma_k(alpha, k) = k * gamma(alpha)
// or gamma_beta(alpha, beta) = gamma(alpha) / beta
// So far I have not needed to use this, and thus the second parameter is by default 1.
if (alpha >= 1) {
float d, c, x, v, u;
double d, c, x, v, u;
d = alpha - 1.0 / 3.0;
c = 1.0 / sqrt(9.0 * d);
while (1) {
@ -105,7 +111,7 @@ float sample_gamma(float alpha, uint64_t* seed)
v = 1.0 + c * x;
} while (v <= 0.0);
v = v * v * v;
v = v * v * v;
u = sample_unit_uniform(seed);
if (u < 1.0 - 0.0331 * (x * x * x * x)) { // Condition 1
// the 0.0331 doesn't inspire much confidence
@ -125,24 +131,24 @@ float sample_gamma(float alpha, uint64_t* seed)
}
}
float sample_beta(float a, float b, uint64_t* seed)
double sample_beta(double a, double b, uint64_t* seed)
{
float gamma_a = sample_gamma(a, seed);
float gamma_b = sample_gamma(b, seed);
double gamma_a = sample_gamma(a, seed);
double gamma_b = sample_gamma(b, seed);
return gamma_a / (gamma_a + gamma_b);
}
// Array helpers
float array_sum(float* array, int length)
double array_sum(double* array, int length)
{
float sum = 0.0;
double sum = 0.0;
for (int i = 0; i < length; i++) {
sum += array[i];
}
return sum;
}
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
void array_cumsum(double* array_to_sum, double* array_cumsummed, int length)
{
array_cumsummed[0] = array_to_sum[0];
for (int i = 1; i < length; i++) {
@ -150,39 +156,38 @@ void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
}
}
float array_mean(float* array, int length)
double array_mean(double* array, int length)
{
float sum = array_sum(array, length);
double sum = array_sum(array, length);
return sum / length;
}
float array_std(float* array, int length)
double array_std(double* array, int length)
{
float mean = array_mean(array, length);
float std = 0.0;
double mean = array_mean(array, length);
double std = 0.0;
for (int i = 0; i < length; i++) {
std += (array[i] - mean);
std *= std;
std += (array[i] - mean) * (array[i] - mean);
}
std = sqrt(std / length);
return std;
}
// Mixture function
float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists, uint64_t* seed)
double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed)
{
// You can see a simpler version of this function in the git history
// or in C-02-better-algorithm-one-thread/
float sum_weights = array_sum(weights, n_dists);
float* cumsummed_normalized_weights = (float*)malloc(n_dists * sizeof(float));
double sum_weights = array_sum(weights, n_dists);
double* cumsummed_normalized_weights = (double*)malloc(n_dists * sizeof(double));
cumsummed_normalized_weights[0] = weights[0] / sum_weights;
for (int i = 1; i < n_dists; i++) {
cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
}
float result;
double result;
int result_set_flag = 0;
float p = sample_uniform(0, 1, seed);
double p = sample_uniform(0, 1, seed);
for (int k = 0; k < n_dists; k++) {
if (p < cumsummed_normalized_weights[k]) {
result = samplers[k](seed);
@ -200,7 +205,7 @@ float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists
// Sample from an arbitrary cdf
struct box {
int empty;
float content;
double content;
char* error_msg;
};
@ -219,13 +224,13 @@ struct box process_error(const char* error_msg, int should_exit, char* file, int
// Inverse cdf at point
// Two versions of this function:
// - raw, dealing with cdfs that return floats
// - input: cdf: float => float, p
// - raw, dealing with cdfs that return doubles
// - input: cdf: double => double, p
// - output: Box(number|error)
// - box, dealing with cdfs that return a box.
// - input: cdf: float => Box(number|error), p
// - input: cdf: double => Box(number|error), p
// - output: Box(number|error)
struct box inverse_cdf_float(float cdf(float), float p)
struct box inverse_cdf_double(double cdf(double), double p)
{
// given a cdf: [-Inf, Inf] => [0,1]
// returns a box with either
@ -233,8 +238,8 @@ struct box inverse_cdf_float(float cdf(float), float p)
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
float low = -1.0;
float high = 1.0;
double low = -1.0;
double high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
@ -260,14 +265,14 @@ struct box inverse_cdf_float(float cdf(float), float p)
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
float mid = (high + low) / 2;
double mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// float width = high - low;
// double width = high - low;
// if ((width < 1e-8) || mid_not_new){
if (mid_not_new) {
convergence_condition = 1;
} else {
float mid_sign = cdf(mid) - p;
double mid_sign = cdf(mid) - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
@ -288,7 +293,7 @@ struct box inverse_cdf_float(float cdf(float), float p)
}
}
struct box inverse_cdf_box(struct box cdf_box(float), float p)
struct box inverse_cdf_box(struct box cdf_box(double), double p)
{
// given a cdf: [-Inf, Inf] => Box([0,1])
// returns a box with either
@ -296,8 +301,8 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
float low = -1.0;
float high = 1.0;
double low = -1.0;
double high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
@ -332,9 +337,9 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
float mid = (high + low) / 2;
double mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// float width = high - low;
// double width = high - low;
if (mid_not_new) {
// if ((width < 1e-8) || mid_not_new){
convergence_condition = 1;
@ -343,7 +348,7 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
if (cdf_mid.empty) {
return PROCESS_ERROR(cdf_mid.error_msg);
}
float mid_sign = cdf_mid.content - p;
double mid_sign = cdf_mid.content - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
@ -365,23 +370,60 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
}
// Sampler based on inverse cdf and randomness function
struct box sampler_cdf_box(struct box cdf(float), uint64_t* seed)
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed)
{
float p = sample_unit_uniform(seed);
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
return result;
}
struct box sampler_cdf_float(float cdf(float), uint64_t* seed)
struct box sampler_cdf_double(double cdf(double), uint64_t* seed)
{
float p = sample_unit_uniform(seed);
struct box result = inverse_cdf_float(cdf, p);
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_double(cdf, p);
return result;
}
// Get confidence intervals, given a sampler
struct c_i {
float low;
float high;
};
int compare_doubles(const void *p, const void *q) {
// https://wikiless.esmailelbob.xyz/wiki/Qsort?lang=en
double x = *(const double *)p;
double y = *(const double *)q;
/* Avoid return x - y, which can cause undefined behaviour
because of signed integer overflow. */
if (x < y)
return -1; // Return -1 if you want ascending, 1 if you want descending order.
else if (x > y)
return 1; // Return 1 if you want ascending, -1 if you want descending order.
return 0;
}
struct c_i get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed){
int n = 100 * 1000;
double* samples_array = malloc(n * sizeof(double));
for(int i=0; i<n; i++){
samples_array[i] = sampler(seed);
}
qsort(samples_array, n, sizeof(double), compare_doubles);
struct c_i result = {
.low = samples_array[5000],
.high =samples_array[94999],
};
free(samples_array);
return result;
}
/* Could also define other variations, e.g.,
float sampler_danger(struct box cdf(float), uint64_t* seed)
double sampler_danger(struct box cdf(double), uint64_t* seed)
{
float p = sample_unit_uniform(seed);
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
if(result.empty){
exit(1);

View File

@ -8,31 +8,31 @@
uint64_t xorshift64(uint64_t* seed);
// Basic distribution sampling functions
float sample_unit_uniform(uint64_t* seed);
float sample_unit_normal(uint64_t* seed);
double sample_unit_uniform(uint64_t* seed);
double sample_unit_normal(uint64_t* seed);
// Composite distribution sampling functions
float sample_uniform(float start, float end, uint64_t* seed);
float sample_normal(float mean, float sigma, uint64_t* seed);
float sample_lognormal(float logmean, float logsigma, uint64_t* seed);
float sample_to(float low, float high, uint64_t* seed);
double sample_uniform(double start, double end, uint64_t* seed);
double sample_normal(double mean, double sigma, uint64_t* seed);
double sample_lognormal(double logmean, double logsigma, uint64_t* seed);
double sample_to(double low, double high, uint64_t* seed);
float sample_gamma(float alpha, uint64_t* seed);
float sample_beta(float a, float b, uint64_t* seed);
double sample_gamma(double alpha, uint64_t* seed);
double sample_beta(double a, double b, uint64_t* seed);
// Array helpers
float array_sum(float* array, int length);
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length);
float array_mean(float* array, int length);
float array_std(float* array, int length);
double array_sum(double* array, int length);
void array_cumsum(double* array_to_sum, double* array_cumsummed, int length);
double array_mean(double* array, int length);
double array_std(double* array, int length);
// Mixture function
float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists, uint64_t* seed);
double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed);
// Box
struct box {
int empty;
float content;
double content;
char* error_msg;
};
@ -43,11 +43,18 @@ struct box {
struct box process_error(const char* error_msg, int should_exit, char* file, int line);
// Inverse cdf
struct box inverse_cdf_float(float cdf(float), float p);
struct box inverse_cdf_box(struct box cdf_box(float), float p);
struct box inverse_cdf_double(double cdf(double), double p);
struct box inverse_cdf_box(struct box cdf_box(double), double p);
// Samplers from cdf
struct box sampler_cdf_float(float cdf(float), uint64_t* seed);
struct box sampler_cdf_box(struct box cdf(float), uint64_t* seed);
struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
// Get 90% confidence interval
struct c_i {
float low;
float high;
};
struct c_i get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed);
#endif

View File

@ -36,6 +36,9 @@ format: $(SRC)
run: $(SRC) $(OUTPUT)
./$(OUTPUT)
verify: $(SRC) $(OUTPUT)
./$(OUTPUT) | grep "NOT passed" -A 2 --group-separator='' || true
time-linux:
@echo "Requires /bin/time, found on GNU/Linux systems" && echo

BIN
test/test

Binary file not shown.

View File

@ -1,93 +1,326 @@
#include "../squiggle.h"
#include <stdint.h>
#include <math.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#define N 1000 * 1000
#define TOLERANCE 5.0 / 1000.0
#define MAX_NAME_LENGTH 500
void test_unit_uniform(uint64_t* seed){
float* unit_uniform_array = malloc(sizeof(float) * N);
for(int i=0; i<N; i++){
unit_uniform_array[i] = sample_unit_uniform(seed);
}
float mean = array_mean(unit_uniform_array, N);
float expected_mean = 0.5;
float delta_mean = mean - expected_mean;
// Structs
float std = array_std(unit_uniform_array, N);
float expected_std = sqrt(1.0/12.0);
float delta_std = std - expected_std;
printf("Mean of unit uniform: %f, vs expected mean: %f, delta: %f\n", mean, expected_mean, delta_mean);
printf("Std of unit uniform: %f, vs expected std: %f, delta: %f\n", std, expected_std, delta_std);
struct array_expectations {
double* array;
int n;
char* name;
double expected_mean;
double expected_std;
double tolerance;
};
if(fabs(delta_mean) > 1.0/1000.0){
printf("[-] Mean test for unit uniform NOT passed.\n");
}else {
printf("[x] Mean test for unit uniform PASSED\n");
}
void test_array_expectations(struct array_expectations e)
{
double mean = array_mean(e.array, e.n);
double delta_mean = mean - e.expected_mean;
if(fabs(delta_std) > 1.0/1000.0){
printf("[-] Std test for unit uniform NOT passed.\n");
}else {
printf("[x] Std test for unit uniform PASSED\n");
}
printf("\n");
double std = array_std(e.array, e.n);
double delta_std = std - e.expected_std;
if ((fabs(delta_mean) / fabs(mean) > e.tolerance) && (fabs(delta_mean) > e.tolerance)) {
printf("[-] Mean test for %s NOT passed.\n", e.name);
printf("Mean of %s: %f, vs expected mean: %f\n", e.name, mean, e.expected_mean);
printf("delta: %f, relative delta: %f\n", delta_mean, delta_mean / fabs(mean));
} else {
printf("[x] Mean test for %s PASSED\n", e.name);
}
if ((fabs(delta_std) / fabs(std) > e.tolerance) && (fabs(delta_std) > e.tolerance)) {
printf("[-] Std test for %s NOT passed.\n", e.name);
printf("Std of %s: %f, vs expected std: %f\n", e.name, std, e.expected_std);
printf("delta: %f, relative delta: %f\n", delta_std, delta_std / fabs(std));
} else {
printf("[x] Std test for %s PASSED\n", e.name);
}
printf("\n");
}
void test_uniform(float start, float end, uint64_t* seed){
float* uniform_array = malloc(sizeof(float) * N);
for(int i=0; i<N; i++){
uniform_array[i] = sample_uniform(start, end, seed);
}
float mean = array_mean(uniform_array, N);
float expected_mean = (start + end) / 2;
float delta_mean = mean - expected_mean;
float std = array_std(uniform_array, N);
float expected_std = sqrt(1.0/12.0) * fabs(end-start);
float delta_std = std - expected_std;
// Test unit uniform
void test_unit_uniform(uint64_t* seed)
{
int n = 1000 * 1000;
double* unit_uniform_array = malloc(sizeof(double) * n);
float width = fabs(end - start);
if(fabs(delta_mean) > width * 1.0/1000.0){
printf("[-] Mean test for [%.1f, %.1f] uniform NOT passed.\n", start, end);
printf("Mean of [%.1f, %.1f] uniform: %f, vs expected mean: %f, delta: %f\n", start, end, mean, expected_mean, mean - expected_mean);
}else {
printf("[x] Mean test for unit uniform PASSED\n");
}
for (int i = 0; i < n; i++) {
unit_uniform_array[i] = sample_unit_uniform(seed);
}
if(fabs(delta_std) > width * 1.0/1000.0){
printf("[-] Std test for [%.1f, %.1f] uniform NOT passed.\n", start, end);
printf("Std of [%.1f, %.1f] uniform: %f, vs expected std: %f, delta: %f\n", start, end, std, expected_std, std - expected_std);
}else {
printf("[x] Std test for unit uniform PASSED\n");
}
printf("\n");
struct array_expectations expectations = {
.array = unit_uniform_array,
.n = n,
.name = "unit uniform",
.expected_mean = 0.5,
.expected_std = sqrt(1.0 / 12.0),
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(unit_uniform_array);
}
int main(){
// Test uniforms
void test_uniform(double start, double end, uint64_t* seed)
{
int n = 1000 * 1000;
double* uniform_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
uniform_array[i] = sample_uniform(start, end, seed);
}
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
snprintf(name, MAX_NAME_LENGTH, "[%f, %f] uniform", start, end);
struct array_expectations expectations = {
.array = uniform_array,
.n = n,
.name = name,
.expected_mean = (start + end) / 2,
.expected_std = sqrt(1.0 / 12.0) * fabs(end - start),
.tolerance = fabs(end - start) * TOLERANCE,
};
test_array_expectations(expectations);
free(name);
free(uniform_array);
}
// Test unit normal
void test_unit_normal(uint64_t* seed)
{
int n = 1000 * 1000;
double* unit_normal_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
unit_normal_array[i] = sample_unit_normal(seed);
}
struct array_expectations expectations = {
.array = unit_normal_array,
.n = n,
.name = "unit normal",
.expected_mean = 0,
.expected_std = 1,
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(unit_normal_array);
}
// Test normal
void test_normal(double mean, double std, uint64_t* seed)
{
int n = 10 * 1000 * 1000;
double* normal_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
normal_array[i] = sample_normal(mean, std, seed);
}
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
snprintf(name, MAX_NAME_LENGTH, "normal(%f, %f)", mean, std);
struct array_expectations expectations = {
.array = normal_array,
.n = n,
.name = name,
.expected_mean = mean,
.expected_std = std,
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(name);
free(normal_array);
}
// Test lognormal
void test_lognormal(double logmean, double logstd, uint64_t* seed)
{
int n = 10 * 1000 * 1000;
double* lognormal_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
lognormal_array[i] = sample_lognormal(logmean, logstd, seed);
}
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
snprintf(name, MAX_NAME_LENGTH, "lognormal(%f, %f)", logmean, logstd);
struct array_expectations expectations = {
.array = lognormal_array,
.n = n,
.name = name,
.expected_mean = exp(logmean + pow(logstd, 2) / 2),
.expected_std = sqrt((exp(pow(logstd, 2)) - 1) * exp(2 * logmean + pow(logstd, 2))),
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(name);
free(lognormal_array);
}
// Test lognormal to
void test_to(double low, double high, uint64_t* seed)
{
int n = 10 * 1000 * 1000;
double* lognormal_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
lognormal_array[i] = sample_to(low, high, seed);
}
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
snprintf(name, MAX_NAME_LENGTH, "to(%f, %f)", low, high);
const double NORMAL95CONFIDENCE = 1.6448536269514722;
double loglow = logf(low);
double loghigh = logf(high);
double logmean = (loglow + loghigh) / 2;
double logstd = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
struct array_expectations expectations = {
.array = lognormal_array,
.n = n,
.name = name,
.expected_mean = exp(logmean + pow(logstd, 2) / 2),
.expected_std = sqrt((exp(pow(logstd, 2)) - 1) * exp(2 * logmean + pow(logstd, 2))),
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(name);
free(lognormal_array);
}
// Test beta
void test_beta(double a, double b, uint64_t* seed)
{
int n = 10 * 1000 * 1000;
double* beta_array = malloc(sizeof(double) * n);
for (int i = 0; i < n; i++) {
beta_array[i] = sample_beta(a, b, seed);
}
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
snprintf(name, MAX_NAME_LENGTH, "beta(%f, %f)", a, b);
struct array_expectations expectations = {
.array = beta_array,
.n = n,
.name = name,
.expected_mean = a / (a + b),
.expected_std = sqrt((a * b) / (pow(a + b, 2) * (a + b + 1))),
.tolerance = TOLERANCE,
};
test_array_expectations(expectations);
free(name);
}
int main()
{
// set randomness seed
uint64_t* seed = malloc(sizeof(uint64_t));
*seed = 1000; // xorshift can't start with a seed of 0
test_unit_uniform(seed);
for(int i=0; i<100; i++){
float start = sample_uniform(-10, 10, seed);
float end = sample_uniform(-10, 10, seed);
if ( end > start){
test_uniform(start, end, seed);
}
}
free(seed);
printf("Testing unit uniform\n");
test_unit_uniform(seed);
printf("Testing small uniforms\n");
for (int i = 0; i < 100; i++) {
double start = sample_uniform(-10, 10, seed);
double end = sample_uniform(-10, 10, seed);
if (end > start) {
test_uniform(start, end, seed);
}
}
printf("Testing wide uniforms\n");
for (int i = 0; i < 100; i++) {
double start = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
double end = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
if (end > start) {
test_uniform(start, end, seed);
}
}
printf("Testing unit normal\n");
test_unit_normal(seed);
printf("Testing small normals\n");
for (int i = 0; i < 100; i++) {
double mean = sample_uniform(-10, 10, seed);
double std = sample_uniform(0, 10, seed);
if (std > 0) {
test_normal(mean, std, seed);
}
}
printf("Testing larger normals\n");
for (int i = 0; i < 100; i++) {
double mean = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
double std = sample_uniform(0, 1000 * 1000, seed);
if (std > 0) {
test_normal(mean, std, seed);
}
}
printf("Testing smaller lognormals\n");
for (int i = 0; i < 100; i++) {
double mean = sample_uniform(-1, 1, seed);
double std = sample_uniform(0, 1, seed);
if (std > 0) {
test_lognormal(mean, std, seed);
}
}
printf("Testing larger lognormals\n");
for (int i = 0; i < 100; i++) {
double mean = sample_uniform(-1, 5, seed);
double std = sample_uniform(0, 5, seed);
if (std > 0) {
test_lognormal(mean, std, seed);
}
}
printf("Testing lognormals — sample_to(low, high) syntax\n");
for (int i = 0; i < 100; i++) {
double low = sample_uniform(0, 1000 * 1000, seed);
double high = sample_uniform(0, 1000 * 1000, seed);
if (low < high) {
test_to(low, high, seed);
}
}
printf("Testing beta distribution\n");
for (int i = 0; i < 100; i++) {
double a = sample_uniform(0, 1000, seed);
double b = sample_uniform(0, 1000, seed);
if ((a > 0) && (b > 0)) {
test_beta(a, b, seed);
}
}
printf("Testing larger beta distributions\n");
for (int i = 0; i < 100; i++) {
double a = sample_uniform(0, 1000 * 1000, seed);
double b = sample_uniform(0, 1000 * 1000, seed);
if ((a > 0) && (b > 0)) {
test_beta(a, b, seed);
}
}
free(seed);
}