tweaks
This commit is contained in:
parent
e6b4cb89df
commit
de33917f67
|
@ -7,10 +7,9 @@
|
||||||
- [x] Make README.md less messy
|
- [x] Make README.md less messy
|
||||||
- [x] Give examples of new functions
|
- [x] Give examples of new functions
|
||||||
- [x] Reference commit with cdf functions, even though deleted
|
- [x] Reference commit with cdf functions, even though deleted
|
||||||
|
- [ ] Figure out fixed point libraries <https://github.com/PetteriAimonen/libfixmath/>, and overflow guards for operations
|
||||||
- [ ] Post on suckless subreddit
|
- [ ] Post on suckless subreddit
|
||||||
- [ ] Look into <https://lite.duckduckgo.com/html/> instead?
|
|
||||||
- [ ] Drive in a few more real-life applications
|
- [ ] Drive in a few more real-life applications
|
||||||
- [ ] US election modelling?
|
|
||||||
- [ ] Look into using size_t instead of int for sample numbers
|
- [ ] Look into using size_t instead of int for sample numbers
|
||||||
- [ ] Reorganize code a little bit to reduce usage of gcc's nested functions
|
- [ ] Reorganize code a little bit to reduce usage of gcc's nested functions
|
||||||
- [ ] Rename examples
|
- [ ] Rename examples
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -1,34 +0,0 @@
|
||||||
#include "../../../squiggle.h"
|
|
||||||
#include "../../../squiggle_more.h"
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
|
|
||||||
double cumsum_p0 = 0.6;
|
|
||||||
double cumsum_p1 = 0.8;
|
|
||||||
double cumsum_p2 = 0.9;
|
|
||||||
double cumsum_p3 = 1.0;
|
|
||||||
|
|
||||||
double sampler_result(uint64_t * seed)
|
|
||||||
{
|
|
||||||
|
|
||||||
double p = sample_uniform(0, 1, seed);
|
|
||||||
if(p< cumsum_p0){
|
|
||||||
return 0;
|
|
||||||
} else if (p < cumsum_p1){
|
|
||||||
return 1;
|
|
||||||
} else if (p < cumsum_p2){
|
|
||||||
return sample_to(1,3, seed);
|
|
||||||
} else {
|
|
||||||
return sample_to(2, 10, seed);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
int main()
|
|
||||||
{
|
|
||||||
|
|
||||||
int n_samples = 1000 * 1000, n_threads = 16;
|
|
||||||
double* results = malloc((size_t)n_samples * sizeof(double));
|
|
||||||
sampler_parallel(sampler_result, results, n_threads, n_samples);
|
|
||||||
printf("Avg: %f\n", array_sum(results, n_samples) / n_samples);
|
|
||||||
free(results);
|
|
||||||
}
|
|
|
@ -52,7 +52,6 @@ all:
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 12_time_to_botec_parallel/$(SRC) $(DEPS) -o 12_time_to_botec_parallel/$(OUTPUT)
|
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 12_time_to_botec_parallel/$(SRC) $(DEPS) -o 12_time_to_botec_parallel/$(OUTPUT)
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 13_parallelize_min/$(SRC) $(DEPS) -o 13_parallelize_min/$(OUTPUT)
|
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 13_parallelize_min/$(SRC) $(DEPS) -o 13_parallelize_min/$(OUTPUT)
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 14_check_confidence_interval/$(SRC) $(DEPS) -o 14_check_confidence_interval/$(OUTPUT)
|
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 14_check_confidence_interval/$(SRC) $(DEPS) -o 14_check_confidence_interval/$(OUTPUT)
|
||||||
$(CC) $(OPTIMIZED) $(DEBUG) $(WARN) 15_time_to_botec_custom_mixture/$(SRC) $(DEPS) -o 15_time_to_botec_custom_mixture/$(OUTPUT)
|
|
||||||
|
|
||||||
format-all:
|
format-all:
|
||||||
$(FORMATTER) 00_example_template/$(SRC)
|
$(FORMATTER) 00_example_template/$(SRC)
|
||||||
|
|
BIN
scratchpad/ai
Executable file
BIN
scratchpad/ai
Executable file
Binary file not shown.
51
scratchpad/ai.c
Normal file
51
scratchpad/ai.c
Normal file
|
@ -0,0 +1,51 @@
|
||||||
|
#include "../squiggle.h"
|
||||||
|
#include "../squiggle_more.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
// Estimate functions
|
||||||
|
double sample_ais_1(uint64_t* seed)
|
||||||
|
{
|
||||||
|
double num_arxiv_ml_authors_2024 = 7379; // Number of authors who published in the stats.ML category on arxiv in 2023
|
||||||
|
double fraction_of_ml = sample_beta(7.41986324742243, 114.487997692331, seed); // fraction they are of the field. 0.03 to 0.1. https://nunosempere.com/blog/2023/03/15/fit-beta/
|
||||||
|
double fraction_of_their_research_thats_relevant = sample_beta(0.8277362357555023, 25.259989675532076, seed); // fraction of their research that is safety relevant, 0.001 to 0.1
|
||||||
|
double academia_adjustment = sample_beta(1.9872200324266, 6.36630125578423, seed); // 0.05 0.5 adjustment because they are from academia
|
||||||
|
|
||||||
|
return num_arxiv_ml_authors_2024 * fraction_of_their_research_thats_relevant * academia_adjustment / fraction_of_ml;
|
||||||
|
}
|
||||||
|
|
||||||
|
double sample_ais_2(uint64_t* seed)
|
||||||
|
{
|
||||||
|
double num_arxiv_ml_authors_2024 = 7379; // Number of authors who published in the stats.ML category on arxiv in 2023
|
||||||
|
double fraction_of_ml = sample_beta(7.41986324742243, 114.487997692331, seed); // fraction they are of the field. 0.03 to 0.1. https://nunosempere.com/blog/2023/03/15/fit-beta/
|
||||||
|
double fraction_of_their_research_thats_relevant = sample_beta(3.28962721497463, 17.7686162987246, seed); // fraction of their research that is safety relevant, 0.001 to 0.1
|
||||||
|
double academia_adjustment = sample_beta(2.23634269185645, 3.73532102339597, seed); // 0.05 0.5 adjustment because they are from academia
|
||||||
|
|
||||||
|
return num_arxiv_ml_authors_2024 * fraction_of_their_research_thats_relevant * academia_adjustment / fraction_of_ml;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
// set randomness seed
|
||||||
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||||
|
*seed = 1000; // xorshift can't start with 0
|
||||||
|
|
||||||
|
int n_samples = 10 * MILLION;
|
||||||
|
|
||||||
|
printf("# AIS 1\n");
|
||||||
|
double* xs = malloc(sizeof(double) * (size_t)n_samples);
|
||||||
|
sampler_parallel(sample_ais_1, xs, 16, n_samples);
|
||||||
|
printf("# Stats\n");
|
||||||
|
array_print_stats(xs, n_samples);
|
||||||
|
printf("\n# Histogram\n");
|
||||||
|
array_print_histogram(xs, n_samples, 23);
|
||||||
|
|
||||||
|
printf("# AIS 2\n");
|
||||||
|
sampler_parallel(sample_ais_2, xs, 16, n_samples);
|
||||||
|
printf("# Stats\n");
|
||||||
|
array_print_stats(xs, n_samples);
|
||||||
|
printf("\n# Histogram\n");
|
||||||
|
array_print_histogram(xs, n_samples, 23);
|
||||||
|
|
||||||
|
free(seed);
|
||||||
|
}
|
33
scratchpad/aisfield/example.c
Normal file
33
scratchpad/aisfield/example.c
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
#include "../../../squiggle.h"
|
||||||
|
#include "../../../squiggle_more.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
// Estimate functions
|
||||||
|
double sample_beta_3_2(uint64_t* seed)
|
||||||
|
{
|
||||||
|
double num_arxiv_ml_authors_2024 = 7379; // Number of authors who published in the stats.ML category on arxiv in 2023
|
||||||
|
double fraction_of_ml = sample_beta(7.41986324742243, 114.487997692331, seed); // fraction they are of the field. 0.03 to 0.1. https://nunosempere.com/blog/2023/03/15/fit-beta/
|
||||||
|
double fraction_of_their_research_thats_relevant = sample_beta(0.8277362357555023, 25.259989675532076, seed); // fraction of their research that is safety relevant, 0.001 to 0.1
|
||||||
|
double academia_discount = sample_beta(1.9872200324266, 6.36630125578423, seed); // 0.05 0.5 discount because they are from academia
|
||||||
|
|
||||||
|
return num_arxiv_ml_authors_2024 * fraction_of_their_research_thats_relevant * academia_discount / fraction_of_ml;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
// set randomness seed
|
||||||
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||||
|
*seed = 1000; // xorshift can't start with 0
|
||||||
|
|
||||||
|
int n_samples = 1 * MILLION;
|
||||||
|
double* xs = malloc(sizeof(double) * (size_t)n_samples);
|
||||||
|
sampler_parallel(sample_beta_3_2, xs, 16, n_samples);
|
||||||
|
|
||||||
|
printf("\n# Stats\n");
|
||||||
|
array_print_stats(xs, n_samples);
|
||||||
|
printf("\n# Histogram\n");
|
||||||
|
array_print_histogram(xs, n_samples, 23);
|
||||||
|
|
||||||
|
free(seed);
|
||||||
|
}
|
Binary file not shown.
|
@ -50,7 +50,7 @@ double sample_unit_normal(uint64_t* seed)
|
||||||
// // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
|
// // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
|
||||||
double u1 = sample_unit_uniform(seed);
|
double u1 = sample_unit_uniform(seed);
|
||||||
double u2 = sample_unit_uniform(seed);
|
double u2 = sample_unit_uniform(seed);
|
||||||
double z = sqrt(-2.0 * log(u1)) * sin(2.0 * PI * u2);
|
double z = sqrt(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||||
return z;
|
return z;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -90,7 +90,7 @@ double sample_normal_from_90_ci(double low, double high, uint64_t* seed)
|
||||||
// 5. If we want a 90% confidence interval from high to low,
|
// 5. If we want a 90% confidence interval from high to low,
|
||||||
// we can set mean = (high + low)/2; the midpoint, and L = high-low,
|
// we can set mean = (high + low)/2; the midpoint, and L = high-low,
|
||||||
// Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
|
// Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
|
||||||
double mean = (high + low) * 0.5;
|
double mean = (high + low) / 2.0;
|
||||||
double std = (high - low) / (2.0 * NORMAL90CONFIDENCE);
|
double std = (high - low) / (2.0 * NORMAL90CONFIDENCE);
|
||||||
return sample_normal(mean, std, seed);
|
return sample_normal(mean, std, seed);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user