readme tweaks; add 90% histogram function
This commit is contained in:
		
							parent
							
								
									e62a840625
								
							
						
					
					
						commit
						c676a22ba8
					
				| 
						 | 
				
			
			@ -401,6 +401,8 @@ Overall, I'd describe the error handling capabilities of this library as pretty
 | 
			
		|||
 | 
			
		||||
### To do
 | 
			
		||||
 | 
			
		||||
- [ ] Come up with a better headline example; fermi paradox paper is too complicated
 | 
			
		||||
- [ ] Post on suckless subreddit
 | 
			
		||||
- [ ] Drive in a few more real-life applications
 | 
			
		||||
  - [ ] US election modelling?
 | 
			
		||||
- [ ] Look into using size_t instead of int for sample numbers
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -215,8 +215,8 @@ void array_print_stats(double xs[], int n){
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
void array_print_histogram(double* xs, int n_samples, int n_bins) {
 | 
			
		||||
    // Interface inspired by <https://github.com/red-data-tools/YouPlot>
 | 
			
		||||
    // Generated with the help of an llm; there might be subtle off-by-one errors
 | 
			
		||||
    // interface inspired by <https://github.com/red-data-tools/YouPlot>
 | 
			
		||||
    if (n_bins <= 1) {
 | 
			
		||||
        fprintf(stderr, "Number of bins must be greater than 1.\n");
 | 
			
		||||
        return;
 | 
			
		||||
| 
						 | 
				
			
			@ -305,6 +305,90 @@ void array_print_histogram(double* xs, int n_samples, int n_bins) {
 | 
			
		|||
    free(bins);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void array_print_90_ci_histogram(double* xs, int n){
 | 
			
		||||
    // Code duplicated from previous function
 | 
			
		||||
    // I'll consider simplifying it at some future point
 | 
			
		||||
    // Possible ideas:
 | 
			
		||||
    // - having only one function that takes any confidence interval?
 | 
			
		||||
    // - having a utility function that is called by both functions?
 | 
			
		||||
    ci ci_90 = array_get_90_ci(xs, n);
 | 
			
		||||
 | 
			
		||||
    if (n_bins <= 1) {
 | 
			
		||||
        fprintf(stderr, "Number of bins must be greater than 1.\n");
 | 
			
		||||
        return;
 | 
			
		||||
    } else if (n_samples <= 10) {
 | 
			
		||||
        fprintf(stderr, "Number of samples must be higher than 10.\n");
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int *bins = (int*) calloc((size_t)n_bins, sizeof(int));
 | 
			
		||||
    if (bins == NULL) {
 | 
			
		||||
        fprintf(stderr, "Memory allocation for bins failed.\n");
 | 
			
		||||
        return;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    double min_value = ci_90.low, max_value = ci_90.high;
 | 
			
		||||
 | 
			
		||||
    // Avoid division by zero for a single unique value
 | 
			
		||||
    if (min_value == max_value) {
 | 
			
		||||
        max_value++;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Calculate bin width
 | 
			
		||||
    double range = max_value - min_value;
 | 
			
		||||
    double bin_width = range / n_bins;
 | 
			
		||||
 | 
			
		||||
    // Fill the bins with sample counts
 | 
			
		||||
    for (int i = 0; i < n_samples; i++) {
 | 
			
		||||
        if((x[i] > min_value) && (x[i] < max_value)){
 | 
			
		||||
            int bin_index = (int)((xs[i] - min_value) / bin_width);
 | 
			
		||||
            if (bin_index == n_bins) {
 | 
			
		||||
                bin_index--; // Last bin includes max_value
 | 
			
		||||
            }
 | 
			
		||||
            bins[bin_index]++;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Calculate the scaling factor based on the maximum bin count
 | 
			
		||||
    int max_bin_count = 0;
 | 
			
		||||
    for (int i = 0; i < n_bins; i++) {
 | 
			
		||||
        if (bins[i] > max_bin_count) {
 | 
			
		||||
            max_bin_count = bins[i];
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    const int MAX_WIDTH = 50; // Adjust this to your terminal width
 | 
			
		||||
    double scale = max_bin_count > MAX_WIDTH ? (double)MAX_WIDTH / max_bin_count : 1.0;
 | 
			
		||||
 | 
			
		||||
    // Print the histogram
 | 
			
		||||
    for (int i = 0; i < n_bins; i++) {
 | 
			
		||||
        double bin_start = min_value + i * bin_width;
 | 
			
		||||
        double bin_end = bin_start + bin_width;
 | 
			
		||||
 | 
			
		||||
        int decimalPlaces = 1;
 | 
			
		||||
        if((0 < bin_width) && (bin_width < 1)){
 | 
			
		||||
            int magnitude = (int) floor(log10(bin_width));
 | 
			
		||||
            decimalPlaces = -magnitude;
 | 
			
		||||
            decimalPlaces = decimalPlaces > 10 ? 10 : decimalPlaces;  
 | 
			
		||||
        }
 | 
			
		||||
        printf("  [%*.*f, %*.*f", 4+decimalPlaces, decimalPlaces, bin_start, 4+decimalPlaces, decimalPlaces, bin_end);
 | 
			
		||||
        char interval_delimiter = ')';
 | 
			
		||||
        if(i == (n_bins-1)){
 | 
			
		||||
            interval_delimiter = ']'; // last bucket is inclusive
 | 
			
		||||
        }
 | 
			
		||||
        printf("%c: ", interval_delimiter);
 | 
			
		||||
 | 
			
		||||
        int marks = (int)(bins[i] * scale);
 | 
			
		||||
        for (int j = 0; j < marks; j++) {
 | 
			
		||||
            printf("█");
 | 
			
		||||
        }
 | 
			
		||||
        printf(" %d\n", bins[i]);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Free the allocated memory for bins
 | 
			
		||||
    free(bins);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Replicate some of the above functions over samplers
 | 
			
		||||
// However, in the future I'll delete this
 | 
			
		||||
// There should be a clear boundary between working with samplers and working with an array of samples
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user