squiggle.c/references/Beta_distribution?lang=en

35345 lines
1.9 MiB
Plaintext
Raw Normal View History

2023-12-03 18:46:24 +00:00
<!DOCTYPE html>
<html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-zebra-design-disabled vector-feature-custom-font-size-clientpref-0 vector-feature-client-preferences-disabled vector-feature-client-prefs-pinned-disabled vector-feature-typography-survey-disabled vector-toc-available" lang="en" dir="ltr">
<head>
<meta charset="UTF-8">
<title>Beta distribution - Wikipedia</title>
<script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-zebra-design-disabled vector-feature-custom-font-size-clientpref-0 vector-feature-client-preferences-disabled vector-feature-client-prefs-pinned-disabled vector-feature-typography-survey-disabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],
"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"37740b1b-4c93-49af-b163-dcb14b9e5070","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Beta_distribution","wgTitle":"Beta distribution","wgCurRevisionId":1187935768,"wgRevisionId":1187935768,"wgArticleId":207074,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","CS1: long volume value","CS1 errors: missing periodical","All articles with dead external links","Articles with dead external links from October 2019","Articles with permanently dead external links","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from February 2013",
"Commons category link from Wikidata","Continuous distributions","Factorial and binomial topics","Conjugate prior distributions","Exponential family distributions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Beta_distribution","wgRelevantArticleId":207074,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":6,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgULSCurrentAutonym":"English","wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":
"interlanguage","wgULSisCompactLinksEnabled":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q756254","wgCheckUserClientHintsHeadersJsApi":["architecture","bitness","brands","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"skins.vector.user.styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","skins.vector.user":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","codex-search-styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[
"ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.head","mmv.bootstrap.autostart","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script>
<script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"});
}];});});</script>
<link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022">
<script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script>
<meta name="ResourceLoaderDynamicStyles" content="">
<link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022">
<meta name="generator" content="MediaWiki 1.42.0-wmf.7">
<meta name="referrer" content="origin">
<meta name="referrer" content="origin-when-cross-origin">
<meta name="robots" content="max-image-preview:standard">
<meta name="format-detection" content="telephone=no">
<meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/1200px-Beta_distribution_pdf.svg.png">
<meta property="og:image:width" content="1200">
<meta property="og:image:height" content="960">
<meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/800px-Beta_distribution_pdf.svg.png">
<meta property="og:image:width" content="800">
<meta property="og:image:height" content="640">
<meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/640px-Beta_distribution_pdf.svg.png">
<meta property="og:image:width" content="640">
<meta property="og:image:height" content="512">
<meta name="viewport" content="width=1000">
<meta property="og:title" content="Beta distribution - Wikipedia">
<meta property="og:type" content="website">
<link rel="preconnect" href="//upload.wikimedia.org">
<link rel="alternate" media="only screen and (max-width: 720px)" href="//en.m.wikipedia.org/wiki/Beta_distribution">
<link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Beta_distribution&amp;action=edit">
<link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png">
<link rel="icon" href="/static/favicon/wikipedia.ico">
<link rel="search" type="application/opensearchdescription+xml" href="/w/opensearch_desc.php" title="Wikipedia (en)">
<link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd">
<link rel="canonical" href="https://en.wikipedia.org/wiki/Beta_distribution">
<link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">
<link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom">
<link rel="dns-prefetch" href="//meta.wikimedia.org" />
<link rel="dns-prefetch" href="//login.wikimedia.org">
</head>
<body class="skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Beta_distribution rootpage-Beta_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a>
<div class="vector-header-container">
<header class="vector-header mw-header">
<div class="vector-header-start">
<nav class="vector-main-menu-landmark" aria-label="Site" role="navigation">
<div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" >
<input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" >
<label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span>
<span class="vector-dropdown-label-text">Main menu</span>
</label>
<div class="vector-dropdown-content">
<div id="vector-main-menu-unpinned-container" class="vector-unpinned-container">
<div id="vector-main-menu" class="vector-main-menu vector-pinnable-element">
<div
class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned"
data-feature-name="main-menu-pinned"
data-pinnable-element-id="vector-main-menu"
data-pinned-container-id="vector-main-menu-pinned-container"
data-unpinned-container-id="vector-main-menu-unpinned-container"
>
<div class="vector-pinnable-header-label">Main menu</div>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button>
</div>
<div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" >
<div class="vector-menu-heading">
Navigation
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" title="Support us by donating to the Wikimedia Foundation"><span>Donate</span></a></li>
</ul>
</div>
</div>
<div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" >
<div class="vector-menu-heading">
Contribute
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li>
</ul>
</div>
</div>
<div class="vector-main-menu-action vector-main-menu-action-lang-alert">
<div class="vector-main-menu-action-item">
<div class="vector-main-menu-action-heading vector-menu-heading">Languages</div>
<div class="vector-main-menu-action-content vector-menu-content">
<div class="mw-message-box cdx-message cdx-message--block mw-message-box-notice cdx-message--notice vector-language-sidebar-alert"><span class="cdx-message__icon"></span><div class="cdx-message__content">Language links are at the top of the page across from the title.</div></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</nav>
<a href="/wiki/Main_Page" class="mw-logo">
<img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50">
<span class="mw-logo-container">
<img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;">
<img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;">
</span>
</a>
</div>
<div class="vector-header-end">
<div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box">
<a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" id="" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span>
<span>Search</span>
</a>
<div class="vector-typeahead-search-container">
<div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width">
<form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button">
<div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved">
<div class="cdx-text-input cdx-text-input--has-start-icon">
<input
class="cdx-text-input__input"
type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput"
>
<span class="cdx-text-input__icon cdx-text-input__start-icon"></span>
</div>
<input type="hidden" name="title" value="Special:Search">
</div>
<button class="cdx-button cdx-search-input__end-button">Search</button>
</form>
</div>
</div>
</div>
<nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools" role="navigation" >
<div class="vector-user-links-main">
<div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
</ul>
</div>
</div>
<div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
</ul>
</div>
</div>
<nav class="vector-client-prefs-landmark" aria-label="Theme">
</nav>
<div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
</ul>
</div>
</div>
<div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Beta+distribution&amp;returntoquery=lang%3Den" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a>
</li>
<li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Beta+distribution&amp;returntoquery=lang%3Den" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a>
</li>
</ul>
</div>
</div>
</div>
<div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" >
<input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" >
<label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span>
<span class="vector-dropdown-label-text">Personal tools</span>
</label>
<div class="vector-dropdown-content">
<div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Beta+distribution&amp;returntoquery=lang%3Den" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Beta+distribution&amp;returntoquery=lang%3Den" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li>
</ul>
</div>
</div>
<div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" >
<div class="vector-menu-heading">
Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a>
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li>
</ul>
</div>
</div>
</div>
</div>
</nav>
</div>
</header>
</div>
<div class="mw-page-container">
<div class="mw-page-container-inner">
<div class="vector-sitenotice-container">
<div id="siteNotice"><!-- CentralNotice --></div>
</div>
<div class="vector-main-menu-container">
<div id="mw-navigation">
<nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site" role="navigation">
<div id="vector-main-menu-pinned-container" class="vector-pinned-container">
</div>
</nav>
</div>
</div>
<div class="vector-sticky-pinned-container">
<nav id="mw-panel-toc" role="navigation" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark">
<div id="vector-toc-pinned-container" class="vector-pinned-container">
<div id="vector-toc" class="vector-toc vector-pinnable-element">
<div
class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned"
data-feature-name="toc-pinned"
data-pinnable-element-id="vector-toc"
>
<h2 class="vector-pinnable-header-label">Contents</h2>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button>
</div>
<ul class="vector-toc-contents" id="mw-panel-toc-list">
<li id="toc-mw-content-text"
class="vector-toc-list-item vector-toc-level-1">
<a href="#" class="vector-toc-link">
<div class="vector-toc-text">(Top)</div>
</a>
</li>
<li id="toc-Definitions"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Definitions">
<div class="vector-toc-text">
<span class="vector-toc-numb">1</span>Definitions</div>
</a>
<button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle">
<span class="vector-icon vector-icon--x-small mw-ui-icon-wikimedia-expand"></span>
<span>Toggle Definitions subsection</span>
</button>
<ul id="toc-Definitions-sublist" class="vector-toc-list">
<li id="toc-Probability_density_function"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Probability_density_function">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.1</span>Probability density function</div>
</a>
<ul id="toc-Probability_density_function-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Cumulative_distribution_function"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Cumulative_distribution_function">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.2</span>Cumulative distribution function</div>
</a>
<ul id="toc-Cumulative_distribution_function-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Alternative_parameterizations"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Alternative_parameterizations">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3</span>Alternative parameterizations</div>
</a>
<ul id="toc-Alternative_parameterizations-sublist" class="vector-toc-list">
<li id="toc-Two_parameters"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Two_parameters">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3.1</span>Two parameters</div>
</a>
<ul id="toc-Two_parameters-sublist" class="vector-toc-list">
<li id="toc-Mean_and_sample_size"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Mean_and_sample_size">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3.1.1</span>Mean and sample size</div>
</a>
<ul id="toc-Mean_and_sample_size-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mode_and_concentration"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Mode_and_concentration">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3.1.2</span>Mode and concentration</div>
</a>
<ul id="toc-Mode_and_concentration-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mean_and_variance"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Mean_and_variance">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3.1.3</span>Mean and variance</div>
</a>
<ul id="toc-Mean_and_variance-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Four_parameters"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Four_parameters">
<div class="vector-toc-text">
<span class="vector-toc-numb">1.3.2</span>Four parameters</div>
</a>
<ul id="toc-Four_parameters-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li id="toc-Properties"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Properties">
<div class="vector-toc-text">
<span class="vector-toc-numb">2</span>Properties</div>
</a>
<button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle">
<span class="vector-icon vector-icon--x-small mw-ui-icon-wikimedia-expand"></span>
<span>Toggle Properties subsection</span>
</button>
<ul id="toc-Properties-sublist" class="vector-toc-list">
<li id="toc-Measures_of_central_tendency"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Measures_of_central_tendency">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1</span>Measures of central tendency</div>
</a>
<ul id="toc-Measures_of_central_tendency-sublist" class="vector-toc-list">
<li id="toc-Mode"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mode">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1.1</span>Mode</div>
</a>
<ul id="toc-Mode-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Median"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Median">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1.2</span>Median</div>
</a>
<ul id="toc-Median-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mean"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mean">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1.3</span>Mean</div>
</a>
<ul id="toc-Mean-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Geometric_mean"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Geometric_mean">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1.4</span>Geometric mean</div>
</a>
<ul id="toc-Geometric_mean-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Harmonic_mean"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Harmonic_mean">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.1.5</span>Harmonic mean</div>
</a>
<ul id="toc-Harmonic_mean-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Measures_of_statistical_dispersion"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Measures_of_statistical_dispersion">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.2</span>Measures of statistical dispersion</div>
</a>
<ul id="toc-Measures_of_statistical_dispersion-sublist" class="vector-toc-list">
<li id="toc-Variance"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Variance">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.2.1</span>Variance</div>
</a>
<ul id="toc-Variance-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Geometric_variance_and_covariance"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Geometric_variance_and_covariance">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.2.2</span>Geometric variance and covariance</div>
</a>
<ul id="toc-Geometric_variance_and_covariance-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mean_absolute_deviation_around_the_mean"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mean_absolute_deviation_around_the_mean">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.2.3</span>Mean absolute deviation around the mean</div>
</a>
<ul id="toc-Mean_absolute_deviation_around_the_mean-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mean_absolute_difference"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mean_absolute_difference">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.2.4</span>Mean absolute difference</div>
</a>
<ul id="toc-Mean_absolute_difference-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Skewness"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Skewness">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.3</span>Skewness</div>
</a>
<ul id="toc-Skewness-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Kurtosis"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Kurtosis">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.4</span>Kurtosis</div>
</a>
<ul id="toc-Kurtosis-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Characteristic_function"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Characteristic_function">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.5</span>Characteristic function</div>
</a>
<ul id="toc-Characteristic_function-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Other_moments"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Other_moments">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6</span>Other moments</div>
</a>
<ul id="toc-Other_moments-sublist" class="vector-toc-list">
<li id="toc-Moment_generating_function"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Moment_generating_function">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6.1</span>Moment generating function</div>
</a>
<ul id="toc-Moment_generating_function-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Higher_moments"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Higher_moments">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6.2</span>Higher moments</div>
</a>
<ul id="toc-Higher_moments-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Moments_of_transformed_random_variables"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Moments_of_transformed_random_variables">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6.3</span>Moments of transformed random variables</div>
</a>
<ul id="toc-Moments_of_transformed_random_variables-sublist" class="vector-toc-list">
<li id="toc-Moments_of_linearly_transformed,_product_and_inverted_random_variables"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Moments_of_linearly_transformed,_product_and_inverted_random_variables">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6.3.1</span>Moments of linearly transformed, product and inverted random variables</div>
</a>
<ul id="toc-Moments_of_linearly_transformed,_product_and_inverted_random_variables-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Moments_of_logarithmically_transformed_random_variables"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Moments_of_logarithmically_transformed_random_variables">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.6.3.2</span>Moments of logarithmically transformed random variables</div>
</a>
<ul id="toc-Moments_of_logarithmically_transformed_random_variables-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li id="toc-Quantities_of_information_(entropy)"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Quantities_of_information_(entropy)">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.7</span>Quantities of information (entropy)</div>
</a>
<ul id="toc-Quantities_of_information_(entropy)-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Relationships_between_statistical_measures"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Relationships_between_statistical_measures">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.8</span>Relationships between statistical measures</div>
</a>
<ul id="toc-Relationships_between_statistical_measures-sublist" class="vector-toc-list">
<li id="toc-Mean,_mode_and_median_relationship"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mean,_mode_and_median_relationship">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.8.1</span>Mean, mode and median relationship</div>
</a>
<ul id="toc-Mean,_mode_and_median_relationship-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Mean,_geometric_mean_and_harmonic_mean_relationship"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Mean,_geometric_mean_and_harmonic_mean_relationship">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.8.2</span>Mean, geometric mean and harmonic mean relationship</div>
</a>
<ul id="toc-Mean,_geometric_mean_and_harmonic_mean_relationship-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Kurtosis_bounded_by_the_square_of_the_skewness"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Kurtosis_bounded_by_the_square_of_the_skewness">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.8.3</span>Kurtosis bounded by the square of the skewness</div>
</a>
<ul id="toc-Kurtosis_bounded_by_the_square_of_the_skewness-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Symmetry"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Symmetry">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.9</span>Symmetry</div>
</a>
<ul id="toc-Symmetry-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Geometry_of_the_probability_density_function"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Geometry_of_the_probability_density_function">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.10</span>Geometry of the probability density function</div>
</a>
<ul id="toc-Geometry_of_the_probability_density_function-sublist" class="vector-toc-list">
<li id="toc-Inflection_points"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Inflection_points">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.10.1</span>Inflection points</div>
</a>
<ul id="toc-Inflection_points-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Shapes"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Shapes">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.10.2</span>Shapes</div>
</a>
<ul id="toc-Shapes-sublist" class="vector-toc-list">
<li id="toc-Symmetric_(α_=_β)"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Symmetric_(α_=_β)">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.10.2.1</span>Symmetric (<i>α</i> = <i>β</i>)</div>
</a>
<ul id="toc-Symmetric_(α_=_β)-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Skewed_(α_≠_β)"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Skewed_(α_≠_β)">
<div class="vector-toc-text">
<span class="vector-toc-numb">2.10.2.2</span>Skewed (<i>α</i> ≠ <i>β</i>)</div>
</a>
<ul id="toc-Skewed_(α_≠_β)-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li id="toc-Related_distributions"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Related_distributions">
<div class="vector-toc-text">
<span class="vector-toc-numb">3</span>Related distributions</div>
</a>
<button aria-controls="toc-Related_distributions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle">
<span class="vector-icon vector-icon--x-small mw-ui-icon-wikimedia-expand"></span>
<span>Toggle Related distributions subsection</span>
</button>
<ul id="toc-Related_distributions-sublist" class="vector-toc-list">
<li id="toc-Transformations"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Transformations">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.1</span>Transformations</div>
</a>
<ul id="toc-Transformations-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Special_and_limiting_cases"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Special_and_limiting_cases">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.2</span>Special and limiting cases</div>
</a>
<ul id="toc-Special_and_limiting_cases-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Derived_from_other_distributions"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Derived_from_other_distributions">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.3</span>Derived from other distributions</div>
</a>
<ul id="toc-Derived_from_other_distributions-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Combination_with_other_distributions"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Combination_with_other_distributions">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.4</span>Combination with other distributions</div>
</a>
<ul id="toc-Combination_with_other_distributions-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Compounding_with_other_distributions"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Compounding_with_other_distributions">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.5</span>Compounding with other distributions</div>
</a>
<ul id="toc-Compounding_with_other_distributions-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Generalisations"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Generalisations">
<div class="vector-toc-text">
<span class="vector-toc-numb">3.6</span>Generalisations</div>
</a>
<ul id="toc-Generalisations-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Statistical_inference"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Statistical_inference">
<div class="vector-toc-text">
<span class="vector-toc-numb">4</span>Statistical inference</div>
</a>
<button aria-controls="toc-Statistical_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle">
<span class="vector-icon vector-icon--x-small mw-ui-icon-wikimedia-expand"></span>
<span>Toggle Statistical inference subsection</span>
</button>
<ul id="toc-Statistical_inference-sublist" class="vector-toc-list">
<li id="toc-Parameter_estimation"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Parameter_estimation">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1</span>Parameter estimation</div>
</a>
<ul id="toc-Parameter_estimation-sublist" class="vector-toc-list">
<li id="toc-Method_of_moments"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Method_of_moments">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.1</span>Method of moments</div>
</a>
<ul id="toc-Method_of_moments-sublist" class="vector-toc-list">
<li id="toc-Two_unknown_parameters"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Two_unknown_parameters">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.1.1</span>Two unknown parameters</div>
</a>
<ul id="toc-Two_unknown_parameters-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Four_unknown_parameters"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Four_unknown_parameters">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.1.2</span>Four unknown parameters</div>
</a>
<ul id="toc-Four_unknown_parameters-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Maximum_likelihood"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Maximum_likelihood">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.2</span>Maximum likelihood</div>
</a>
<ul id="toc-Maximum_likelihood-sublist" class="vector-toc-list">
<li id="toc-Two_unknown_parameters_2"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Two_unknown_parameters_2">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.2.1</span>Two unknown parameters</div>
</a>
<ul id="toc-Two_unknown_parameters_2-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Four_unknown_parameters_2"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Four_unknown_parameters_2">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.2.2</span>Four unknown parameters</div>
</a>
<ul id="toc-Four_unknown_parameters_2-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Fisher_information_matrix"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Fisher_information_matrix">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.3</span>Fisher information matrix</div>
</a>
<ul id="toc-Fisher_information_matrix-sublist" class="vector-toc-list">
<li id="toc-Two_parameters_2"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Two_parameters_2">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.3.1</span>Two parameters</div>
</a>
<ul id="toc-Two_parameters_2-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Four_parameters_2"
class="vector-toc-list-item vector-toc-level-4">
<a class="vector-toc-link" href="#Four_parameters_2">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.1.3.2</span>Four parameters</div>
</a>
<ul id="toc-Four_parameters_2-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li id="toc-Bayesian_inference"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Bayesian_inference">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2</span>Bayesian inference</div>
</a>
<ul id="toc-Bayesian_inference-sublist" class="vector-toc-list">
<li id="toc-Rule_of_succession"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Rule_of_succession">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2.1</span>Rule of succession</div>
</a>
<ul id="toc-Rule_of_succession-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Bayes-Laplace_prior_probability_(Beta(1,1))"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Bayes-Laplace_prior_probability_(Beta(1,1))">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2.2</span>Bayes-Laplace prior probability (Beta(1,1))</div>
</a>
<ul id="toc-Bayes-Laplace_prior_probability_(Beta(1,1))-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Haldane&#039;s_prior_probability_(Beta(0,0))"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Haldane&#039;s_prior_probability_(Beta(0,0))">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2.3</span>Haldane's prior probability (Beta(0,0))</div>
</a>
<ul id="toc-Haldane&#039;s_prior_probability_(Beta(0,0))-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Jeffreys&#039;_prior_probability_(Beta(1/2,1/2)_for_a_Bernoulli_or_for_a_binomial_distribution)"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Jeffreys&#039;_prior_probability_(Beta(1/2,1/2)_for_a_Bernoulli_or_for_a_binomial_distribution)">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2.4</span>Jeffreys' prior probability (Beta(1/2,1/2) for a Bernoulli or for a binomial distribution)</div>
</a>
<ul id="toc-Jeffreys&#039;_prior_probability_(Beta(1/2,1/2)_for_a_Bernoulli_or_for_a_binomial_distribution)-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Effect_of_different_prior_probability_choices_on_the_posterior_beta_distribution"
class="vector-toc-list-item vector-toc-level-3">
<a class="vector-toc-link" href="#Effect_of_different_prior_probability_choices_on_the_posterior_beta_distribution">
<div class="vector-toc-text">
<span class="vector-toc-numb">4.2.5</span>Effect of different prior probability choices on the posterior beta distribution</div>
</a>
<ul id="toc-Effect_of_different_prior_probability_choices_on_the_posterior_beta_distribution-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
</ul>
</li>
<li id="toc-Occurrence_and_applications"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Occurrence_and_applications">
<div class="vector-toc-text">
<span class="vector-toc-numb">5</span>Occurrence and applications</div>
</a>
<button aria-controls="toc-Occurrence_and_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle">
<span class="vector-icon vector-icon--x-small mw-ui-icon-wikimedia-expand"></span>
<span>Toggle Occurrence and applications subsection</span>
</button>
<ul id="toc-Occurrence_and_applications-sublist" class="vector-toc-list">
<li id="toc-Order_statistics"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Order_statistics">
<div class="vector-toc-text">
<span class="vector-toc-numb">5.1</span>Order statistics</div>
</a>
<ul id="toc-Order_statistics-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Subjective_logic"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Subjective_logic">
<div class="vector-toc-text">
<span class="vector-toc-numb">5.2</span>Subjective logic</div>
</a>
<ul id="toc-Subjective_logic-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Wavelet_analysis"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Wavelet_analysis">
<div class="vector-toc-text">
<span class="vector-toc-numb">5.3</span>Wavelet analysis</div>
</a>
<ul id="toc-Wavelet_analysis-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Population_genetics"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Population_genetics">
<div class="vector-toc-text">
<span class="vector-toc-numb">5.4</span>Population genetics</div>
</a>
<ul id="toc-Population_genetics-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Project_management:_task_cost_and_schedule_modeling"
class="vector-toc-list-item vector-toc-level-2">
<a class="vector-toc-link" href="#Project_management:_task_cost_and_schedule_modeling">
<div class="vector-toc-text">
<span class="vector-toc-numb">5.5</span>Project management: task cost and schedule modeling</div>
</a>
<ul id="toc-Project_management:_task_cost_and_schedule_modeling-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</li>
<li id="toc-Random_variate_generation"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Random_variate_generation">
<div class="vector-toc-text">
<span class="vector-toc-numb">6</span>Random variate generation</div>
</a>
<ul id="toc-Random_variate_generation-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-Normal_approximation_to_the_Beta_distribution"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#Normal_approximation_to_the_Beta_distribution">
<div class="vector-toc-text">
<span class="vector-toc-numb">7</span>Normal approximation to the Beta distribution</div>
</a>
<ul id="toc-Normal_approximation_to_the_Beta_distribution-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-History"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#History">
<div class="vector-toc-text">
<span class="vector-toc-numb">8</span>History</div>
</a>
<ul id="toc-History-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-References"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#References">
<div class="vector-toc-text">
<span class="vector-toc-numb">9</span>References</div>
</a>
<ul id="toc-References-sublist" class="vector-toc-list">
</ul>
</li>
<li id="toc-External_links"
class="vector-toc-list-item vector-toc-level-1">
<a class="vector-toc-link" href="#External_links">
<div class="vector-toc-text">
<span class="vector-toc-numb">10</span>External links</div>
</a>
<ul id="toc-External_links-sublist" class="vector-toc-list">
</ul>
</li>
</ul>
</div>
</div>
</nav>
</div>
<div class="mw-content-container">
<main id="content" class="mw-body" role="main">
<header class="mw-body-header vector-page-titlebar">
<nav role="navigation" aria-label="Contents" class="vector-toc-landmark">
<div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" >
<input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" >
<label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span>
<span class="vector-dropdown-label-text">Toggle the table of contents</span>
</label>
<div class="vector-dropdown-content">
<div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container">
</div>
</div>
</div>
</nav>
<h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Beta distribution</span></h1>
<div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" >
<input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 27 languages" >
<label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-27" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span>
<span class="vector-dropdown-label-text">27 languages</span>
</label>
<div class="vector-dropdown-content">
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_%D8%A8%D9%8A%D8%AA%D8%A7" title="توزيع بيتا Arabic" lang="ar" hreflang="ar" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%91%D1%8D%D1%82%D0%B0-%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BA%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5" title="Бэта-размеркаванне Belarusian" lang="be" hreflang="be" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_beta" title="Distribució beta Catalan" lang="ca" hreflang="ca" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rozd%C4%9Blen%C3%AD_beta" title="Rozdělení beta Czech" lang="cs" hreflang="cs" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Beta-Verteilung" title="Beta-Verteilung German" lang="de" hreflang="de" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_beta" title="Distribución beta Spanish" lang="es" hreflang="es" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D8%A8%D8%AA%D8%A7" title="توزیع بتا Persian" lang="fa" hreflang="fa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_b%C3%AAta" title="Loi bêta French" lang="fr" hreflang="fr" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_beta" title="Distribución beta Galician" lang="gl" hreflang="gl" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B2%A0%ED%83%80_%EB%B6%84%ED%8F%AC" title="베타 분포 Korean" lang="ko" hreflang="ko" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_Beta" title="Distribuzione Beta Italian" lang="it" hreflang="it" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%91%D7%98%D7%90" title="התפלגות בטא Hebrew" lang="he" hreflang="he" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%91%E1%83%94%E1%83%A2%E1%83%90_%E1%83%92%E1%83%90%E1%83%9C%E1%83%90%E1%83%AC%E1%83%98%E1%83%9A%E1%83%94%E1%83%91%E1%83%90" title="ბეტა განაწილება Georgian" lang="ka" hreflang="ka" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/B%C3%A9ta-eloszl%C3%A1s" title="Béta-eloszlás Hungarian" lang="hu" hreflang="hu" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/B%C3%A8taverdeling" title="Bètaverdeling Dutch" lang="nl" hreflang="nl" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><
</ul>
<div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q756254#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div>
</div>
</div>
</div>
</header>
<div class="vector-page-toolbar">
<div class="vector-page-toolbar-container">
<div id="left-navigation">
<nav aria-label="Namespaces">
<div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Beta_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Beta_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li>
</ul>
</div>
</div>
<div id="p-variants" class="vector-dropdown emptyPortlet" >
<input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-dropdown-checkbox " aria-label="Change language variant" >
<label id="p-variants-label" for="p-variants-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span>
</label>
<div class="vector-dropdown-content">
<div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
</ul>
</div>
</div>
</div>
</div>
</nav>
</div>
<div id="right-navigation" class="vector-collapsible">
<nav aria-label="Views">
<div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" >
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Beta_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li>
</ul>
</div>
</div>
</nav>
<nav class="vector-page-tools-landmark" aria-label="Page tools">
<div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" >
<input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" >
<label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span>
</label>
<div class="vector-dropdown-content">
<div id="vector-page-tools-unpinned-container" class="vector-unpinned-container">
<div id="vector-page-tools" class="vector-page-tools vector-pinnable-element">
<div
class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned"
data-feature-name="page-tools-pinned"
data-pinnable-element-id="vector-page-tools"
data-pinned-container-id="vector-page-tools-pinned-container"
data-unpinned-container-id="vector-page-tools-unpinned-container"
>
<div class="vector-pinnable-header-label">Tools</div>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button>
<button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button>
</div>
<div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" >
<div class="vector-menu-heading">
Actions
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Beta_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;action=history"><span>View history</span></a></li>
</ul>
</div>
</div>
<div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" >
<div class="vector-menu-heading">
General
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Beta_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Beta_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;oldid=1187935768" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Beta_distribution&amp;id=1187935768&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DBeta_distribution%26lang%3Den"><span>Get shortened URL</span></a></li><li id="t-wikibase" class="mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q756254" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li>
</ul>
</div>
</div>
<div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" >
<div class="vector-menu-heading">
Print/export
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Beta_distribution&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Beta_distribution&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li>
</ul>
</div>
</div>
<div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" >
<div class="vector-menu-heading">
In other projects
</div>
<div class="vector-menu-content">
<ul class="vector-menu-content-list">
<li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Beta_distribution" hreflang="en"><span>Wikimedia Commons</span></a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
</nav>
</div>
</div>
</div>
<div class="vector-column-end">
<div class="vector-sticky-pinned-container">
<nav class="vector-page-tools-landmark" aria-label="Page tools">
<div id="vector-page-tools-pinned-container" class="vector-pinned-container">
</div>
</nav>
<nav class="vector-client-prefs-landmark" aria-label="Theme">
</nav>
</div>
</div>
<div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container>
<div class="vector-body-before-content">
<div class="mw-indicators">
</div>
<div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div>
</div>
<div id="contentSub"><div id="mw-content-subtitle"></div></div>
<div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div>
<style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Beta_function" title="Beta function">Beta function</a>.</div>
<style data-mw-deduplicate="TemplateStyles:r1066479718">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}body.skin-minerva .mw-parser-output .infobox-header,body.skin-minerva .mw-parser-output .infobox-subheader,body.skin-minerva .mw-parser-output .infobox-above,body.skin-minerva .mw-parser-output .infobox-title,body.skin-minerva .mw-parser-output .infobox-image,body.skin-minerva .mw-parser-output .infobox-full-data,body.skin-minerva .mw-parser-output .infobox-below{text-align:center}</style><style data-mw-deduplicate="TemplateStyles:r1046248152">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid #a2a9b1}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:#ddd;font-weight:bold;text-align:center}</style><table class="infobox ib-prob-dist"><caption class="infobox-title">Beta</caption><tbody><tr><td colspan="4" class="infobox-image">
<div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:Beta_distribution_pdf.svg" class="mw-file-description" title="Probability density function for the Beta distribution"><img alt="Probability density function for the Beta distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/325px-Beta_distribution_pdf.svg.png" decoding="async" width="325" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/488px-Beta_distribution_pdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Beta_distribution_pdf.svg/650px-Beta_distribution_pdf.svg.png 2x" data-file-width="531" data-file-height="425" /></a></span></td></tr><tr><td colspan="4" class="infobox-image">
<div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Beta_distribution_cdf.svg" class="mw-file-description" title="Cumulative distribution function for the Beta distribution"><img alt="Cumulative distribution function for the Beta distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Beta_distribution_cdf.svg/325px-Beta_distribution_cdf.svg.png" decoding="async" width="325" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Beta_distribution_cdf.svg/488px-Beta_distribution_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/11/Beta_distribution_cdf.svg/650px-Beta_distribution_cdf.svg.png 2x" data-file-width="566" data-file-height="425" /></a></span></td></tr><tr><th scope="row" class="infobox-label">Notation</th><td colspan="3" class="infobox-data">
Beta(<i>α</i>, <i>β</i>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data">
<i>α</i> &gt; 0 <a href="/wiki/Shape_parameter" title="Shape parameter">shape</a> (<a href="/wiki/Real_number" title="Real number">real</a>)<br /><i>β</i> &gt; 0 <a href="/wiki/Shape_parameter" title="Shape parameter">shape</a> (<a href="/wiki/Real_number" title="Real number">real</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [0,1]\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>&#x2208;<!-- ∈ --></mo>
<mo stretchy="false">[</mo>
<mn>0</mn>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">]</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x\in [0,1]\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09601f74a28f3e2cad381be1a915ab0c02fe39c6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.111ex; width:8.546ex; height:2.843ex;" alt="{\displaystyle x\in [0,1]\!}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (0,1)\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>&#x2208;<!-- ∈ --></mo>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x\in (0,1)\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c4bd4921b023da2cf81472604e1583c7526af1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:9.118ex; height:2.843ex;" alt="x \in (0, 1)\!"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/125fdaa41844a8703d1a8610ac00fbf3edacc8e7" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.108ex; width:15.688ex; height:6.676ex;" alt="\frac{x^{\alpha-1}(1-x)^{\beta-1}} {\Beta(\alpha,\beta)}\!"></span><br />where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha ,\beta )={\frac {\Gamma (\alpha )\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha ,\beta )={\frac {\Gamma (\alpha )\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b32815268d9d70b0b9fbb8fd5a25be7bc640aa50" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.587ex; height:6.509ex;" alt="{\displaystyle \mathrm {B} (\alpha ,\beta )={\frac {\Gamma (\alpha )\Gamma (\beta )}{\Gamma (\alpha +\beta )}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="\Gamma "></span> is the <a href="/wiki/Gamma_function" title="Gamma function">Gamma function</a>.</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data">
<p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{x}(\alpha ,\beta )\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle I_{x}(\alpha ,\beta )\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/630767808887e1bd81c51a75934e8a196907bb93" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:7.638ex; height:2.843ex;" alt="I_x(\alpha,\beta)\!"></span>
</p>
(the <a href="/wiki/Beta_function#Incomplete_beta_function" title="Beta function">regularized incomplete beta function</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data">
<p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]={\frac {\alpha }{\alpha +\beta }}\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]={\frac {\alpha }{\alpha +\beta }}\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3905662ceed484cba5580951e29eda96f4d2605e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.108ex; width:14.172ex; height:5.176ex;" alt="\operatorname{E}[X] = \frac{\alpha}{\alpha+\beta}\!"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\ln X]=\psi (\alpha )-\psi (\alpha +\beta )\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\ln X]=\psi (\alpha )-\psi (\alpha +\beta )\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de67df996fa33237ab7f415e7edc9fa8e71997a0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:26.694ex; height:2.843ex;" alt="\operatorname{E}[\ln X] = \psi(\alpha) - \psi(\alpha + \beta)\!"></span><br /><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X\,\ln X]={\frac {\alpha }{\alpha +\beta }}\,\left[\psi (\alpha +1)-\psi (\alpha +\beta +1)\right]\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mspace width="thinmathspace" />
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mrow>
<mo>[</mo>
<mrow>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X\,\ln X]={\frac {\alpha }{\alpha +\beta }}\,\left[\psi (\alpha +1)-\psi (\alpha +\beta +1)\right]\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50106a787db7d72ce3066a5a3238813cffebcc2e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.111ex; width:45.962ex; height:5.176ex;" alt="{\displaystyle \operatorname {E} [X\,\ln X]={\frac {\alpha }{\alpha +\beta }}\,\left[\psi (\alpha +1)-\psi (\alpha +\beta +1)\right]\!}"></span><br /> (see section: <a href="#Geometric_mean">Geometric mean</a>) <br />
</p>
where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="\psi "></span> is the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta ){\text{ (in general) }}\\[0.5em]\approx {\frac {\alpha -{\tfrac {1}{3}}}{\alpha +\beta -{\tfrac {2}{3}}}}{\text{ for }}\alpha ,\beta &gt;1\end{matrix}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable rowspacing="0.9em 0.4em" columnspacing="1em">
<mtr>
<mtd>
<msubsup>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">[</mo>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">]</mo>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;(in general)&#xA0;</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;for&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta ){\text{ (in general) }}\\[0.5em]\approx {\frac {\alpha -{\tfrac {1}{3}}}{\alpha +\beta -{\tfrac {2}{3}}}}{\text{ for }}\alpha ,\beta &gt;1\end{matrix}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af887ef0331cde970dad14ad670cf3592334f845" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:23.61ex; height:14.509ex;" alt="\begin{matrix}I_{\frac{1}{2}}^{[-1]}(\alpha,\beta)\text{ (in general) }\\[0.5em]&#10;\approx \frac{ \alpha - \tfrac{1}{3} }{ \alpha + \beta - \tfrac{2}{3} }\text{ for }\alpha, \beta &gt;1\end{matrix}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data">
<p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712b36572a498c2b2ba8a6fc1312bdf47bcd1e39" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.108ex; width:10.22ex; height:5.676ex;" alt="\frac{\alpha-1}{\alpha+\beta-2}\!"></span> for <i>α</i>, <i>β</i> &gt; 1
</p><p>any value in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle (0,1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79c6838e423c1ed3c7ea532a56dc9f9dae8290b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="(0,1)"></span> for <i>α</i>, <i>β</i> = 1
</p><p>{0, 1} (bimodal) for <i>α</i>, <i>β</i> &lt; 1
</p><p>0 for <i>α</i> ≤ 1, <i>β</i> &gt; 1
</p>
1 for <i>α</i> &gt; 1, <i>β</i> ≤ 1</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [X]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [X]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f90a6ad61b4b436749ca37a6c2a1aa077b032ce3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.108ex; width:30.227ex; height:6.176ex;" alt="\operatorname{var}[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\!"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4941f45412823abd34d3befea7f8fbf544135e4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:30.521ex; height:2.843ex;" alt="\operatorname{var}[\ln X] = \psi_1(\alpha) - \psi_1(\alpha + \beta)\!"></span><br />(see <a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a> and see section: <a href="#Geometric_variance_and_covariance">Geometric variance</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2\,(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace" />
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {2\,(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43ec71817c032c8eb21b5feadd0ec9b91c747530" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.842ex; height:7.509ex;" alt="\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Ex. kurtosis</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>6</mn>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eea65a8d7c9e00ba6299b727eab679117776f41e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:40.42ex; height:6.676ex;" alt="\frac{6[(\alpha - \beta)^2 (\alpha +\beta + 1) - \alpha \beta (\alpha + \beta + 2)]}{\alpha \beta (\alpha + \beta + 2) (\alpha + \beta + 3)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{matrix}\ln \mathrm {B} (\alpha ,\beta )-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )\\[0.5em]{}+(\alpha +\beta -2)\psi (\alpha +\beta )\end{matrix}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable rowspacing="0.9em 0.4em" columnspacing="1em">
<mtr>
<mtd>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{matrix}\ln \mathrm {B} (\alpha ,\beta )-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )\\[0.5em]{}+(\alpha +\beta -2)\psi (\alpha +\beta )\end{matrix}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4b6cc1848fe96318adb734393b701cb816f88a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.976ex; height:7.509ex;" alt="{\displaystyle {\begin{matrix}\ln \mathrm {B} (\alpha ,\beta )-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )\\[0.5em]{}+(\alpha +\beta -2)\psi (\alpha +\beta )\end{matrix}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>1</mn>
<mo>+</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munderover>
<mrow>
<mo>(</mo>
<mrow>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>t</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b97b0e33f3134c2fc5c484016ab8e03e18d85481" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.32ex; height:7.509ex;" alt="{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {}_{1}F_{1}(\alpha ;\alpha +\beta ;i\,t)\!}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mspace width="thinmathspace" />
<mi>t</mi>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {}_{1}F_{1}(\alpha ;\alpha +\beta ;i\,t)\!}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d05780b82c8372e644a400af4e75ecd83d454f53" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:16.436ex; height:2.843ex;" alt="{}_1F_1(\alpha; \alpha+\beta; i\,t)\!"></span> (see <a href="/wiki/Confluent_hypergeometric_function" title="Confluent hypergeometric function">Confluent hypergeometric function</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\operatorname {var} [\ln X]&amp;\operatorname {cov} [\ln X,\ln(1-X)]\\\operatorname {cov} [\ln X,\ln(1-X)]&amp;\operatorname {var} [\ln(1-X)]\end{bmatrix}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mo>[</mo>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\operatorname {var} [\ln X]&amp;\operatorname {cov} [\ln X,\ln(1-X)]\\\operatorname {cov} [\ln X,\ln(1-X)]&amp;\operatorname {var} [\ln(1-X)]\end{bmatrix}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/881f91af0ab1d6bf3809a4ed6ca9e6384544292f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.105ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}\operatorname {var} [\ln X]&amp;\operatorname {cov} [\ln X,\ln(1-X)]\\\operatorname {cov} [\ln X,\ln(1-X)]&amp;\operatorname {var} [\ln(1-X)]\end{bmatrix}}}"></span> <br />see section: <a href="#Fisher_information_matrix">Fisher information matrix</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of Moments</a></th><td colspan="3" class="infobox-data">
<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)E[X]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>V</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)E[X]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b596a180ef813a0baa1d6f2063950e20da1f62" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.193ex; height:6.509ex;" alt="{\displaystyle \alpha =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)E[X]}"></span><br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)(1-E[X])}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>V</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \beta =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)(1-E[X])}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ace15e23f6ac9be43eea861f44c018fd3d00de" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.85ex; height:6.509ex;" alt="{\displaystyle \beta =\left({\frac {E[X](1-E[X])}{V[X]}}-1\right)(1-E[X])}"></span></td></tr></tbody></table>
<p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, the <b>beta distribution</b> is a family of continuous <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a> defined on the interval [0, 1] or (0, 1) in terms of two positive <a href="/wiki/Statistical_parameter" title="Statistical parameter">parameters</a>, denoted by <i>alpha</i> (<i>α</i>) and <i>beta</i> (<i>β</i>), that appear as exponents of the variable and its complement to 1, respectively, and control the <a href="/wiki/Shape_parameter" title="Shape parameter">shape</a> of the distribution.
</p><p>The beta distribution has been applied to model the behavior of <a href="/wiki/Random_variables" class="mw-redirect" title="Random variables">random variables</a> limited to intervals of finite length in a wide variety of disciplines. The beta distribution is a suitable model for the random behavior of percentages and proportions.
</p><p>In <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>, the beta distribution is the <a href="/wiki/Conjugate_prior_distribution" class="mw-redirect" title="Conjugate prior distribution">conjugate prior probability distribution</a> for the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a>, <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial</a>, <a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">negative binomial</a> and <a href="/wiki/Geometric_distribution" title="Geometric distribution">geometric</a> distributions.
</p><p>The formulation of the beta distribution discussed here is also known as the <b>beta distribution of the first kind</b>, whereas <i>beta distribution of the second kind</i> is an alternative name for the <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a>. The generalization to multiple variables is called a <a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet distribution</a>.
</p>
<meta property="mw:PageProp/toc" />
<h2><span class="mw-headline" id="Definitions">Definitions</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<h3><span class="mw-headline" id="Probability_density_function">Probability density function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=2" title="Edit section: Probability density function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_of_the_Beta_distribution.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/PDF_of_the_Beta_distribution.gif/220px-PDF_of_the_Beta_distribution.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/78/PDF_of_the_Beta_distribution.gif/330px-PDF_of_the_Beta_distribution.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/7/78/PDF_of_the_Beta_distribution.gif 2x" data-file-width="360" data-file-height="360" /></a><figcaption>An animation of the Beta distribution for different values of its parameters.</figcaption></figure>
<p>The <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (PDF) of the beta distribution, for <span class="nowrap">0 ≤ <i>x</i> ≤ 1</span> or <span class="nowrap">0 &lt; <i>x</i> &lt; 1</span>, and shape parameters <i>α</i>, <i>β</i> &gt; 0, is a <a href="/wiki/Power_function" class="mw-redirect" title="Power function">power function</a> of the variable&#160;<i>x</i> and of its <a href="/wiki/Reflection_formula" title="Reflection formula">reflection</a> <span class="nowrap">(1 <i>x</i>)</span> as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f(x;\alpha ,\beta )&amp;=\mathrm {constant} \cdot x^{\alpha -1}(1-x)^{\beta -1}\\[3pt]&amp;={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\displaystyle \int _{0}^{1}u^{\alpha -1}(1-u)^{\beta -1}\,du}}\\[6pt]&amp;={\frac {\Gamma (\alpha +\beta )}{\Gamma (\alpha )\Gamma (\beta )}}\,x^{\alpha -1}(1-x)^{\beta -1}\\[6pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}x^{\alpha -1}(1-x)^{\beta -1}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">n</mi>
<mi mathvariant="normal">s</mi>
<mi mathvariant="normal">t</mi>
<mi mathvariant="normal">a</mi>
<mi mathvariant="normal">n</mi>
<mi mathvariant="normal">t</mi>
</mrow>
<mo>&#x22C5;<!-- ⋅ --></mo>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mstyle displaystyle="true" scriptlevel="0">
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<msup>
<mi>u</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>u</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>u</mi>
</mstyle>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f(x;\alpha ,\beta )&amp;=\mathrm {constant} \cdot x^{\alpha -1}(1-x)^{\beta -1}\\[3pt]&amp;={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\displaystyle \int _{0}^{1}u^{\alpha -1}(1-u)^{\beta -1}\,du}}\\[6pt]&amp;={\frac {\Gamma (\alpha +\beta )}{\Gamma (\alpha )\Gamma (\beta )}}\,x^{\alpha -1}(1-x)^{\beta -1}\\[6pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}x^{\alpha -1}(1-x)^{\beta -1}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc18388353b219c482e8e35ca4aae808ab1be81" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -14.049ex; margin-bottom: -0.289ex; width:38.853ex; height:29.843ex;" alt="{\displaystyle {\begin{aligned}f(x;\alpha ,\beta )&amp;=\mathrm {constant} \cdot x^{\alpha -1}(1-x)^{\beta -1}\\[3pt]&amp;={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\displaystyle \int _{0}^{1}u^{\alpha -1}(1-u)^{\beta -1}\,du}}\\[6pt]&amp;={\frac {\Gamma (\alpha +\beta )}{\Gamma (\alpha )\Gamma (\beta )}}\,x^{\alpha -1}(1-x)^{\beta -1}\\[6pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}x^{\alpha -1}(1-x)^{\beta -1}\end{aligned}}}"></span></dd></dl>
<p>where Γ(<i>z</i>) is the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>. The <a href="/wiki/Beta_function" title="Beta function">beta function</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93003d072991ba424a73ed1e081afe55c124b6ce" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.646ex; height:2.176ex;" alt="\Beta"></span>, is a <a href="/wiki/Normalization_constant" class="mw-redirect" title="Normalization constant">normalization constant</a> to ensure that the total probability is&#160;1. In the above equations <i>x</i> is a <a href="/wiki/Realization_(probability)" title="Realization (probability)">realization</a>&#8212;an observed value that actually occurred&#8212;of a <a href="/wiki/Random_variable" title="Random variable">random variable</a>&#160;<i>X</i>.
</p><p>Several authors, including <a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N. L. Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S. Kotz</a>,<sup id="cite_ref-JKB_1-0" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> use the symbols <i>p</i> and <i>q</i> (instead of <i>α</i> and <i>β</i>) for the shape parameters of the beta distribution, reminiscent of the symbols traditionally used for the parameters of the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a>, because the beta distribution approaches the Bernoulli distribution in the limit when both shape parameters <i>α</i> and <i>β</i> approach the value of zero.
</p><p>In the following, a random variable <i>X</i> beta-distributed with parameters <i>α</i> and <i>β</i> will be denoted by:<sup id="cite_ref-Mathematical_Statistics_with_MATHEMATICA_2-0" class="reference"><a href="#cite_note-Mathematical_Statistics_with_MATHEMATICA-2">&#91;2&#93;</a></sup><sup id="cite_ref-Kruschke2011_3-0" class="reference"><a href="#cite_note-Kruschke2011-3">&#91;3&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Beta} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Beta} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36783d6420752d49ce41b434457741100627c50a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.486ex; height:2.843ex;" alt="X \sim \operatorname{Beta}(\alpha, \beta)"></span></dd></dl>
<p>Other notations for beta-distributed random variables used in the statistical literature are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\mathcal {B}}e(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">B</mi>
</mrow>
</mrow>
<mi>e</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim {\mathcal {B}}e(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56a8faad7cb5575778caa99bdb3a393dbc22f42a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.368ex; height:2.843ex;" alt="X \sim \mathcal{B}e(\alpha, \beta)"></span><sup id="cite_ref-BergerDecisionTheory_4-0" class="reference"><a href="#cite_note-BergerDecisionTheory-4">&#91;4&#93;</a></sup> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \beta _{\alpha ,\beta }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<msub>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \beta _{\alpha ,\beta }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cda49e80784b8a7df54ac2a81b26c67d9a01831a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.078ex; height:2.843ex;" alt="{\displaystyle X\sim \beta _{\alpha ,\beta }}"></span>.<sup id="cite_ref-Feller_5-0" class="reference"><a href="#cite_note-Feller-5">&#91;5&#93;</a></sup>
</p>
<h3><span class="mw-headline" id="Cumulative_distribution_function">Cumulative distribution function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=3" title="Edit section: Cumulative distribution function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg/220px-CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg" decoding="async" width="220" height="145" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg/330px-CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg/440px-CDF_for_symmetric_Beta_distribution_vs._x_and_alpha%3Dbeta_-_J._Rodal.jpg 2x" data-file-width="1599" data-file-height="1056" /></a><figcaption>CDF for symmetric beta distribution vs. <i>x</i> and&#160;<i>α</i>&#160;=&#160;<i>β</i></figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg/220px-CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg" decoding="async" width="220" height="148" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg/330px-CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg/440px-CDF_for_skewed_Beta_distribution_vs._x_and_beta%3D_5_alpha_-_J._Rodal.jpg 2x" data-file-width="1714" data-file-height="1151" /></a><figcaption>CDF for skewed beta distribution vs. <i>x</i> and&#160;<i>β</i>&#160;=&#160;5<i>α</i></figcaption></figure>
<p>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> is
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;\alpha ,\beta )={\frac {\mathrm {B} {}(x;\alpha ,\beta )}{\mathrm {B} {}(\alpha ,\beta )}}=I_{x}(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>F</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle F(x;\alpha ,\beta )={\frac {\mathrm {B} {}(x;\alpha ,\beta )}{\mathrm {B} {}(\alpha ,\beta )}}=I_{x}(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ef58bb8473944bfb8efa7f5477fb7201d39ac21" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.331ex; height:6.509ex;" alt="{\displaystyle F(x;\alpha ,\beta )={\frac {\mathrm {B} {}(x;\alpha ,\beta )}{\mathrm {B} {}(\alpha ,\beta )}}=I_{x}(\alpha ,\beta )}"></span></dd></dl>
<p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (x;\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (x;\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95174df7b06d48c98cf8c754e2964784f71f1530" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.672ex; height:2.843ex;" alt="\Beta(x;\alpha,\beta)"></span> is the <a href="/wiki/Beta_function#Incomplete_beta_function" title="Beta function">incomplete beta function</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{x}(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle I_{x}(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/663054c3f3dc36c0c8c445386d9e52aea7e26b07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.858ex; height:2.843ex;" alt="I_x(\alpha,\beta)"></span> is the <a href="/wiki/Regularized_incomplete_beta_function" class="mw-redirect" title="Regularized incomplete beta function">regularized incomplete beta function</a>.
</p>
<h3><span class="mw-headline" id="Alternative_parameterizations">Alternative parameterizations</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=4" title="Edit section: Alternative parameterizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Two_parameters">Two parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=5" title="Edit section: Two parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<h5><span class="mw-headline" id="Mean_and_sample_size">Mean and sample size</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=6" title="Edit section: Mean and sample size"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>The beta distribution may also be reparameterized in terms of its mean <i>μ</i> <span class="nowrap">(0 &lt; <i>μ</i> &lt; 1)</span> and the sum of the two shape parameters <span class="nowrap"><i>ν</i> = <i>α</i> + <i>β</i> &gt; 0</span>(<sup id="cite_ref-Kruschke2011_3-1" class="reference"><a href="#cite_note-Kruschke2011-3">&#91;3&#93;</a></sup> p.&#160;83). Denoting by αPosterior and βPosterior the shape parameters of the posterior beta distribution resulting from applying Bayes theorem to a binomial likelihood function and a prior probability, the interpretation of the addition of both shape parameters to be sample size = <i>ν</i> = <i>α</i>·Posterior + <i>β</i>·Posterior is only correct for the Haldane prior probability Beta(0,0). Specifically, for the Bayes (uniform) prior Beta(1,1) the correct interpretation would be sample size = <i>α</i>·Posterior + <i>β</i>&#160;Posterior 2, or <i>ν</i> = (sample size) + 2. For sample size much larger than 2, the difference between these two priors becomes negligible. (See section <a href="#Bayesian_inference">Bayesian inference</a> for further details.) ν = α + β is referred to as the "sample size" of a Beta distribution, but one should remember that it is, strictly speaking, the "sample size" of a binomial likelihood function only when using a Haldane Beta(0,0) prior in Bayes theorem.
</p><p>This parametrization may be useful in Bayesian parameter estimation. For example, one may administer a test to a number of individuals. If it is assumed that each person's score (0 ≤ <i>θ</i> ≤ 1) is drawn from a population-level Beta distribution, then an important statistic is the mean of this population-level distribution. The mean and sample size parameters are related to the shape parameters α and β via<sup id="cite_ref-Kruschke2011_3-2" class="reference"><a href="#cite_note-Kruschke2011-3">&#91;3&#93;</a></sup>
</p>
<dl><dd><i>α</i> = <i>μν</i>, <i>β</i> = (1 <i>μ</i>)<i>ν</i></dd></dl>
<p>Under this <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a>, one may place an <a href="/wiki/Uninformative_prior" class="mw-redirect" title="Uninformative prior">uninformative prior</a> probability over the mean, and a vague prior probability (such as an exponential or gamma distribution) over the positive reals for the sample size, if they are independent, and prior data and/or beliefs justify it.
</p>
<h5><span class="mw-headline" id="Mode_and_concentration">Mode and concentration</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=7" title="Edit section: Mode and concentration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p><a href="/wiki/Concave_function" title="Concave function">Concave</a> beta distributions, which have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc3f33fc553c096bb6e12987a13ab58edef863b6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.114ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta &gt;1}"></span>, can be parametrized in terms of mode and "concentration". The mode, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ={\frac {\alpha -1}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C9;<!-- ω --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \omega ={\frac {\alpha -1}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3af2c8c28b40e585a0ee03663cd5e9a0a9663303" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.043ex; height:5.676ex;" alt="{\displaystyle \omega ={\frac {\alpha -1}{\alpha +\beta -2}}}"></span>, and concentration, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa =\alpha +\beta }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \kappa =\alpha +\beta }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/083a5361b63ff338f0f521f743abe6c497967dbb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.097ex; height:2.509ex;" alt="\kappa = \alpha + \beta"></span>, can be used to define the usual shape parameters as follows:<sup id="cite_ref-Kruschke2015_6-0" class="reference"><a href="#cite_note-Kruschke2015-6">&#91;6&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;=\omega (\kappa -2)+1\\\beta &amp;=(1-\omega )(\kappa -2)+1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;=\omega (\kappa -2)+1\\\beta &amp;=(1-\omega )(\kappa -2)+1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0609418607d04de71bfcf1aaccbe653ebc97dd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.749ex; height:6.176ex;" alt="\begin{align}&#10;\alpha &amp;= \omega (\kappa - 2) + 1\\&#10;\beta &amp;= (1 - \omega)(\kappa - 2) + 1&#10;\end{align}"></span></dd></dl>
<p>For the mode, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\omega &lt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>0</mn>
<mo>&lt;</mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo>&lt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 0&lt;\omega &lt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c81e865b4e001c098ca75a143060ec563cfbf3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.968ex; height:2.176ex;" alt="{\displaystyle 0&lt;\omega &lt;1}"></span>, to be well-defined, we need <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc3f33fc553c096bb6e12987a13ab58edef863b6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.114ex; height:2.509ex;" alt="{\displaystyle \alpha ,\beta &gt;1}"></span>, or equivalently <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa &gt;2}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BA;<!-- κ --></mi>
<mo>&gt;</mo>
<mn>2</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \kappa &gt;2}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e53f495cab81087d61f1a1efc9e5bbbb91e3632" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.6ex; height:2.176ex;" alt="{\displaystyle \kappa &gt;2}"></span>. If instead we define the concentration as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c=\alpha +\beta -2}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>c</mi>
<mo>=</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle c=\alpha +\beta -2}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8ddb6cd3165b37fc58796c628e74e2b8028c57c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.768ex; height:2.509ex;" alt="{\displaystyle c=\alpha +\beta -2}"></span>, the condition simplifies to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>c</mi>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle c&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba126f626d61752f62eaacaf11761a54de4dc84" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.268ex; height:2.176ex;" alt="c&gt;0"></span> and the beta density at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1+c\omega }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
<mi>&#x03C9;<!-- ω --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =1+c\omega }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba7c36ac271ae5f8221d66e2ad723511bd7e8c97" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.042ex; height:2.343ex;" alt="{\displaystyle \alpha =1+c\omega }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =1+c(1-\omega )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \beta =1+c(1-\omega )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2b5f8667e2d553e1b907808d7ba1a77f455c81f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.698ex; height:2.843ex;" alt="{\displaystyle \beta =1+c(1-\omega )}"></span> can be written as:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\omega ,c)={\frac {x^{c\omega }(1-x)^{c(1-\omega )}}{\mathrm {B} {\bigl (}1+c\omega ,1+c(1-\omega ){\bigr )}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mi>&#x03C9;<!-- ω --></mi>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="1.2em" minsize="1.2em">(</mo>
</mrow>
</mrow>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
<mi>&#x03C9;<!-- ω --></mi>
<mo>,</mo>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C9;<!-- ω --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="1.2em" minsize="1.2em">)</mo>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle f(x;\omega ,c)={\frac {x^{c\omega }(1-x)^{c(1-\omega )}}{\mathrm {B} {\bigl (}1+c\omega ,1+c(1-\omega ){\bigr )}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d3157f6c9c92fb94a2058c8ee7a01b607676c9c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:36.405ex; height:7.343ex;" alt="{\displaystyle f(x;\omega ,c)={\frac {x^{c\omega }(1-x)^{c(1-\omega )}}{\mathrm {B} {\bigl (}1+c\omega ,1+c(1-\omega ){\bigr )}}}}"></span></dd></dl>
<p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>c</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle c}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="c"></span> directly scales the <a href="/wiki/Sufficient_statistics" class="mw-redirect" title="Sufficient statistics">sufficient statistics</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(x)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>log</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \log(x)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4157d3b51ac7b147fca145d431d58ec92abc1f70" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.111ex; height:2.843ex;" alt="\log(x)"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(1-x)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>log</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \log(1-x)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d88b5d2afd979fe80e61f8c9c217d7801c810160" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.114ex; height:2.843ex;" alt="{\displaystyle \log(1-x)}"></span>. Note also that in the limit, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\to 0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>c</mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle c\to 0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daa7595054d0a6c13cd4431f85cb517c857a2109" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.783ex; height:2.176ex;" alt="{\displaystyle c\to 0}"></span>, the distribution becomes flat.
</p>
<h5><span class="mw-headline" id="Mean_and_variance">Mean and variance</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=8" title="Edit section: Mean and variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>Solving the system of (coupled) equations given in the above sections as the equations for the mean and the variance of the beta distribution in terms of the original parameters <i>α</i> and <i>β</i>, one can express the <i>α</i> and <i>β</i> parameters in terms of the mean (<i>μ</i>) and the variance (var):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\nu &amp;=\alpha +\beta ={\frac {\mu (1-\mu )}{\mathrm {var} }}-1,{\text{ where }}\nu =(\alpha +\beta )&gt;0,{\text{ therefore: }}{\text{var}}&lt;\mu (1-\mu )\\\alpha &amp;=\mu \nu =\mu \left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu )\\\beta &amp;=(1-\mu )\nu =(1-\mu )\left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu ).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03BD;<!-- ν --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<mi mathvariant="normal">r</mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;therefore:&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>var</mtext>
</mrow>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mtext>var</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>var</mtext>
</mrow>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mtext>var</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>var</mtext>
</mrow>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\nu &amp;=\alpha +\beta ={\frac {\mu (1-\mu )}{\mathrm {var} }}-1,{\text{ where }}\nu =(\alpha +\beta )&gt;0,{\text{ therefore: }}{\text{var}}&lt;\mu (1-\mu )\\\alpha &amp;=\mu \nu =\mu \left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu )\\\beta &amp;=(1-\mu )\nu =(1-\mu )\left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu ).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a68ffe42cadd81968db6bc0e75ee9c8b739c2416" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:78.603ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}\nu &amp;=\alpha +\beta ={\frac {\mu (1-\mu )}{\mathrm {var} }}-1,{\text{ where }}\nu =(\alpha +\beta )&gt;0,{\text{ therefore: }}{\text{var}}&lt;\mu (1-\mu )\\\alpha &amp;=\mu \nu =\mu \left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu )\\\beta &amp;=(1-\mu )\nu =(1-\mu )\left({\frac {\mu (1-\mu )}{\text{var}}}-1\right),{\text{ if }}{\text{var}}&lt;\mu (1-\mu ).\end{aligned}}}"></span></dd></dl>
<p>This <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a> of the beta distribution may lead to a more intuitive understanding than the one based on the original parameters <i>α</i> and <i>β</i>. For example, by expressing the mode, skewness, excess kurtosis and differential entropy in terms of the mean and the variance:
</p><p><span typeof="mw:File"><a href="/wiki/File:Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg/325px-Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg" decoding="async" width="325" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/68/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg/488px-Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/6/68/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_J._Rodal.jpg 2x" data-file-width="629" data-file-height="294" /></a></span><span typeof="mw:File"><a href="/wiki/File:Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg/325px-Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg" decoding="async" width="325" height="153" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg/488px-Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg/650px-Mode_Beta_Distribution_for_both_alpha_and_beta_greater_than_1_-_another_view_-_J._Rodal.jpg 2x" data-file-width="869" data-file-height="410" /></a></span>
<span typeof="mw:File"><a href="/wiki/File:Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg/325px-Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg" decoding="async" width="325" height="211" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg/488px-Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg/650px-Skewness_Beta_Distribution_for_mean_full_range_and_variance_between_0.05_and_0.25_-_Dr._J._Rodal.jpg 2x" data-file-width="698" data-file-height="453" /></a></span><span typeof="mw:File"><a href="/wiki/File:Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg/325px-Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg" decoding="async" width="325" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg/488px-Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg/650px-Skewness_Beta_Distribution_for_mean_and_variance_both_full_range_-_J._Rodal.jpg 2x" data-file-width="790" data-file-height="364" /></a></span>
<span typeof="mw:File"><a href="/wiki/File:Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg/325px-Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg" decoding="async" width="325" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/01/Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg/488px-Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/01/Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg/650px-Excess_Kurtosis_Beta_Distribution_with_mean_for_full_range_and_variance_from_0.05_to_0.25_-_J._Rodal.jpg 2x" data-file-width="718" data-file-height="535" /></a></span><span typeof="mw:File"><a href="/wiki/File:Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg/325px-Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg" decoding="async" width="325" height="243" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/66/Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg/488px-Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/66/Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg/650px-Excess_Kurtosis_Beta_Distribution_with_mean_and_variance_for_full_range_-_J._Rodal.jpg 2x" data-file-width="690" data-file-height="516" /></a></span>
<span typeof="mw:File"><a href="/wiki/File:Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg/325px-Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg" decoding="async" width="325" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg/488px-Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg/650px-Differential_Entropy_Beta_Distribution_with_mean_from_0.2_to_0.8_and_variance_from_0.01_to_0.09_-_J._Rodal.jpg 2x" data-file-width="688" data-file-height="366" /></a></span><span typeof="mw:File"><a href="/wiki/File:Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg/325px-Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg" decoding="async" width="325" height="173" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg/488px-Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg/650px-Differential_Entropy_Beta_Distribution_with_mean_from_0.3_to_0.7_and_variance_from_0_to_0.2_-_J._Rodal.jpg 2x" data-file-width="676" data-file-height="360" /></a></span>
</p>
<h4><span class="mw-headline" id="Four_parameters">Four parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=9" title="Edit section: Four parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>A beta distribution with the two shape parameters α and β is supported on the range [0,1] or (0,1). It is possible to alter the location and scale of the distribution by introducing two further parameters representing the minimum, <i>a</i>, and maximum <i>c</i> (<i>c</i> &gt; <i>a</i>), values of the distribution,<sup id="cite_ref-JKB_1-1" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> by a linear transformation substituting the non-dimensional variable <i>x</i> in terms of the new variable <i>y</i> (with support [<i>a</i>,<i>c</i>] or (<i>a</i>,<i>c</i>)) and the parameters <i>a</i> and <i>c</i>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=x(c-a)+a,{\text{ therefore }}x={\frac {y-a}{c-a}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>y</mi>
<mo>=</mo>
<mi>x</mi>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;therefore&#xA0;</mtext>
</mrow>
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>y</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle y=x(c-a)+a,{\text{ therefore }}x={\frac {y-a}{c-a}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b17fcb84f3f34c6a11cec12a473dd8f02137447d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:38.864ex; height:5.343ex;" alt="y = x(c-a) + a, \text{ therefore }x = \frac{y-a}{c-a}."></span></dd></dl>
<p>The <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the four parameter beta distribution is equal to the two parameter distribution, scaled by the range (<i>c</i>&#160;&#160;<i>a</i>), (so that the total area under the density curve equals a probability of one), and with the "y" variable shifted and scaled as follows:
</p>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(y;\alpha ,\beta ,a,c)={\frac {f(x;\alpha ,\beta )}{c-a}}={\frac {\left({\frac {y-a}{c-a}}\right)^{\alpha -1}\left({\frac {c-y}{c-a}}\right)^{\beta -1}}{(c-a)B(\alpha ,\beta )}}={\frac {(y-a)^{\alpha -1}(c-y)^{\beta -1}}{(c-a)^{\alpha +\beta -1}B(\alpha ,\beta )}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>y</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle f(y;\alpha ,\beta ,a,c)={\frac {f(x;\alpha ,\beta )}{c-a}}={\frac {\left({\frac {y-a}{c-a}}\right)^{\alpha -1}\left({\frac {c-y}{c-a}}\right)^{\beta -1}}{(c-a)B(\alpha ,\beta )}}={\frac {(y-a)^{\alpha -1}(c-y)^{\beta -1}}{(c-a)^{\alpha +\beta -1}B(\alpha ,\beta )}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e3a650c9f6ecc04d36869cc99297e5c853dd2f1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:75.405ex; height:8.843ex;" alt="f(y; \alpha, \beta, a, c) = \frac{f(x;\alpha,\beta)}{c-a} =\frac{\left(\frac{y-a}{c-a}\right)^{\alpha-1} \left (\frac{c-y}{c-a} \right)^{\beta-1} }{(c-a)B(\alpha, \beta)}=\frac{ (y-a)^{\alpha-1} (c-y)^{\beta-1} }{(c-a)^{\alpha+\beta-1}B(\alpha, \beta)}."></span></dd></dl></dd></dl>
<p>That a random variable <i>Y</i> is Beta-distributed with four parameters α, β, <i>a</i>, and <i>c</i> will be denoted by:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \operatorname {Beta} (\alpha ,\beta ,a,c).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Y</mi>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Y\sim \operatorname {Beta} (\alpha ,\beta ,a,c).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/085ce268909196f9aff5e61f3dca6e308bdb4797" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.231ex; height:2.843ex;" alt="{\displaystyle Y\sim \operatorname {Beta} (\alpha ,\beta ,a,c).}"></span></dd></dl>
<p>Some measures of central location are scaled (by (<i>c</i>&#160;&#160;<i>a</i>)) and shifted (by <i>a</i>), as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu _{Y}&amp;=\mu _{X}(c-a)+a\\&amp;=\left({\frac {\alpha }{\alpha +\beta }}\right)(c-a)+a={\frac {\alpha c+\beta a}{\alpha +\beta }}\\[8pt]{\text{mode}}(Y)&amp;={\text{mode}}(X)(c-a)+a\\&amp;=\left({\frac {\alpha -1}{\alpha +\beta -2}}\right)(c-a)+a={\frac {(\alpha -1)c+(\beta -1)a}{\alpha +\beta -2}}\ ,\qquad {\text{ if }}\alpha ,\beta &gt;1\\[8pt]{\text{median}}(Y)&amp;={\text{median}}(X)(c-a)+a\\&amp;=\left(I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta )\right)(c-a)+a\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt 1.1em 0.3em 1.1em 0.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>c</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>a</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>c</mi>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mtext>&#xA0;</mtext>
<mo>,</mo>
<mspace width="2em" />
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">[</mo>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">]</mo>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>a</mi>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu _{Y}&amp;=\mu _{X}(c-a)+a\\&amp;=\left({\frac {\alpha }{\alpha +\beta }}\right)(c-a)+a={\frac {\alpha c+\beta a}{\alpha +\beta }}\\[8pt]{\text{mode}}(Y)&amp;={\text{mode}}(X)(c-a)+a\\&amp;=\left({\frac {\alpha -1}{\alpha +\beta -2}}\right)(c-a)+a={\frac {(\alpha -1)c+(\beta -1)a}{\alpha +\beta -2}}\ ,\qquad {\text{ if }}\alpha ,\beta &gt;1\\[8pt]{\text{median}}(Y)&amp;={\text{median}}(X)(c-a)+a\\&amp;=\left(I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta )\right)(c-a)+a\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f65af6c528ca47e8838d3d5722a94f9e3f128100" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -15.176ex; margin-bottom: -0.329ex; width:80.409ex; height:32.176ex;" alt="{\displaystyle {\begin{aligned}\mu _{Y}&amp;=\mu _{X}(c-a)+a\\&amp;=\left({\frac {\alpha }{\alpha +\beta }}\right)(c-a)+a={\frac {\alpha c+\beta a}{\alpha +\beta }}\\[8pt]{\text{mode}}(Y)&amp;={\text{mode}}(X)(c-a)+a\\&amp;=\left({\frac {\alpha -1}{\alpha +\beta -2}}\right)(c-a)+a={\frac {(\alpha -1)c+(\beta -1)a}{\alpha +\beta -2}}\ ,\qquad {\text{ if }}\alpha ,\beta &gt;1\\[8pt]{\text{median}}(Y)&amp;={\text{median}}(X)(c-a)+a\\&amp;=\left(I_{\frac {1}{2}}^{[-1]}(\alpha ,\beta )\right)(c-a)+a\end{aligned}}}"></span></dd></dl>
<p>Note: the geometric mean and harmonic mean cannot be transformed by a linear transformation in the way that the mean, median and mode can.
</p><p>The shape parameters of <i>Y</i> can be written in term of its mean and variance as
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;={\frac {(a-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\\\beta &amp;=-{\frac {(c-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mspace width="thinmathspace" />
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mspace width="thinmathspace" />
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>c</mi>
<mspace width="thinmathspace" />
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo>+</mo>
<msubsup>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>&#x03C3;<!-- σ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<msubsup>
<mi>&#x03C3;<!-- σ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mspace width="thinmathspace" />
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mspace width="thinmathspace" />
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>c</mi>
<mspace width="thinmathspace" />
<msub>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo>+</mo>
<msubsup>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo>+</mo>
<msubsup>
<mi>&#x03C3;<!-- σ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<msubsup>
<mi>&#x03C3;<!-- σ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;={\frac {(a-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\\\beta &amp;=-{\frac {(c-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83456599e38cdcfc945c9644f0d30518f294edbd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:46.809ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\alpha &amp;={\frac {(a-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\\\beta &amp;=-{\frac {(c-\mu _{Y})(a\,c-a\,\mu _{Y}-c\,\mu _{Y}+\mu _{Y}^{2}+\sigma _{Y}^{2})}{\sigma _{Y}^{2}(c-a)}}\end{aligned}}}"></span></dd></dl>
<p>The statistical dispersion measures are scaled (they do not need to be shifted because they are already centered on the mean) by the range (<i>c</i>&#160;&#160;<i>a</i>), linearly for the mean deviation and nonlinearly for the variance:
</p>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{(mean deviation around mean)}}(Y)=}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>(mean deviation around mean)</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{(mean deviation around mean)}}(Y)=}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52874a2ffb59016e00538157b3c407852379de99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.916ex; height:2.843ex;" alt="{\displaystyle {\text{(mean deviation around mean)}}(Y)=}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{(mean deviation around mean)}}(X))(c-a)={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}(c-a)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>(mean deviation around mean)</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msup>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{(mean deviation around mean)}}(X))(c-a)={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}(c-a)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db99b825a46719a3c5479a9f4470f0f458493ad2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:74.569ex; height:6.509ex;" alt="{\displaystyle ({\text{(mean deviation around mean)}}(X))(c-a)={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}(c-a)}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{var}}(Y)={\text{var}}(X)(c-a)^{2}={\frac {\alpha \beta (c-a)^{2}}{(\alpha +\beta )^{2}(\alpha +\beta +1)}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>var</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>var</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{var}}(Y)={\text{var}}(X)(c-a)^{2}={\frac {\alpha \beta (c-a)^{2}}{(\alpha +\beta )^{2}(\alpha +\beta +1)}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/211065eb20fc7ce222957c21a73d8bd8a5906a5a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.591ex; height:6.676ex;" alt=" \text{var}(Y) =\text{var}(X)(c-a)^2 =\frac{\alpha\beta (c-a)^2}{(\alpha+\beta)^2(\alpha+\beta+1)}."></span></dd></dl></dd></dl>
<p>Since the <a href="/wiki/Skewness" title="Skewness">skewness</a> and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> are non-dimensional quantities (as <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> centered on the mean and normalized by the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a>), they are independent of the parameters <i>a</i> and <i>c</i>, and therefore equal to the expressions given above in terms of <i>X</i> (with support [0,1] or (0,1)):
</p>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{skewness}}(Y)={\text{skewness}}(X)={\frac {2(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{skewness}}(Y)={\text{skewness}}(X)={\frac {2(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/884dd9bbf9a6dcc30f70bba80abdfcbd1c4a18ed" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.693ex; height:7.509ex;" alt=" \text{skewness}(Y) =\text{skewness}(X) = \frac{2 (\beta - \alpha) \sqrt{\alpha + \beta + 1} }{(\alpha + \beta + 2) \sqrt{\alpha \beta}}."></span></dd></dl></dd></dl>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{kurtosis excess}}(Y)={\text{kurtosis excess}}(X)={\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>kurtosis excess</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>kurtosis excess</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>6</mn>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{kurtosis excess}}(Y)={\text{kurtosis excess}}(X)={\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99ddb3577b02ee0b10163123af23c6d7f728946b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:83.421ex; height:6.676ex;" alt=" \text{kurtosis excess}(Y) =\text{kurtosis excess}(X)=\frac{6[(\alpha - \beta)^2 (\alpha +\beta + 1) - \alpha \beta (\alpha + \beta + 2)]}&#10;{\alpha \beta (\alpha + \beta + 2) (\alpha + \beta + 3)} "></span></dd></dl></dd></dl>
<h2><span class="mw-headline" id="Properties">Properties</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=10" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<h3><span class="mw-headline" id="Measures_of_central_tendency">Measures of central tendency</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=11" title="Edit section: Measures of central tendency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Mode">Mode</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=12" title="Edit section: Mode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>The <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> of a Beta distributed <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> with <i>α</i>, <i>β</i> &gt; 1 is the most likely value of the distribution (corresponding to the peak in the PDF), and is given by the following expression:<sup id="cite_ref-JKB_1-2" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/064149e2700adff9c3fb957a3682577905181336" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.146ex; height:5.676ex;" alt="{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}.}"></span></dd></dl>
<p>When both parameters are less than one (<i>α</i>, <i>β</i> &lt; 1), this is the anti-mode: the lowest point of the probability density curve.<sup id="cite_ref-Wadsworth_7-0" class="reference"><a href="#cite_note-Wadsworth-7">&#91;7&#93;</a></sup>
</p><p>Letting <i>α</i> = <i>β</i>, the expression for the mode simplifies to 1/2, showing that for <i>α</i> = <i>β</i> &gt; 1 the mode (resp. anti-mode when <span class="nowrap"><i>α</i>, <i>β</i> &lt; 1</span>), is at the center of the distribution: it is symmetric in those cases. See <a class="mw-selflink-fragment" href="#Shapes">Shapes</a> section in this article for a full list of mode cases, for arbitrary values of <i>α</i> and <i>β</i>. For several of these cases, the maximum value of the density function occurs at one or both ends. In some cases the (maximum) value of the density function occurring at the end is finite. For example, in the case of <i>α</i> = 2, <i>β</i> = 1 (or <i>α</i> = 1, <i>β</i> = 2), the density function becomes a <a href="/wiki/Triangular_distribution" title="Triangular distribution">right-triangle distribution</a> which is finite at both ends. In several other cases there is a <a href="/wiki/Mathematical_singularity" class="mw-redirect" title="Mathematical singularity">singularity</a> at one end, where the value of the density function approaches infinity. For example, in the case <i>α</i> = <i>β</i> = 1/2, the Beta distribution simplifies to become the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>. There is debate among mathematicians about some of these cases and whether the ends (<i>x</i> = 0, and <i>x</i> = 1) can be called <i>modes</i> or not.<sup id="cite_ref-Handbook_of_Beta_Distribution_8-0" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup><sup id="cite_ref-Mathematical_Statistics_with_MATHEMATICA_2-1" class="reference"><a href="#cite_note-Mathematical_Statistics_with_MATHEMATICA-2">&#91;2&#93;</a></sup>
</p>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/5/56/Mode_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="543" data-file-height="317" /></a><figcaption>Mode for Beta distribution for 1 ≤ <i>α</i> ≤ 5 and 1 ≤ β ≤ 5</figcaption></figure>
<ul><li>Whether the ends are part of the <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a> of the density function</li>
<li>Whether a <a href="/wiki/Mathematical_singularity" class="mw-redirect" title="Mathematical singularity">singularity</a> can ever be called a <i>mode</i></li>
<li>Whether cases with two maxima should be called <i>bimodal</i></li></ul>
<h4><span class="mw-headline" id="Median">Median</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=13" title="Edit section: Median"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/325px-Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/42/Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/488px-Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/4/42/Median_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 2x" data-file-width="633" data-file-height="370" /></a><figcaption>Median for Beta distribution for 0 ≤ <i>α</i> ≤ 5 and 0 ≤ <i>β</i> ≤ 5</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:(Mean_-_Median)_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/220px-%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e9/%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/330px-%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e9/%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/440px-%28Mean_-_Median%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 2x" data-file-width="1194" data-file-height="574" /></a><figcaption>(Meanmedian) for Beta distribution versus alpha and beta from 0 to 2</figcaption></figure>
<p>The median of the beta distribution is the unique real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=I_{1/2}^{[-1]}(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<msubsup>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mn>2</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">[</mo>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">]</mo>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x=I_{1/2}^{[-1]}(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7510f94efa49f254eb3924678b527a6fd22d0fc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:14.555ex; height:4.176ex;" alt="{\displaystyle x=I_{1/2}^{[-1]}(\alpha ,\beta )}"></span> for which the <a href="/wiki/Regularized_incomplete_beta_function" class="mw-redirect" title="Regularized incomplete beta function">regularized incomplete beta function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{x}(\alpha ,\beta )={\tfrac {1}{2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle I_{x}(\alpha ,\beta )={\tfrac {1}{2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80f2c2ef73043b11fddaf3488eb5108dabb78a4c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.615ex; height:3.509ex;" alt="I_x(\alpha,\beta) = \tfrac{1}{2} "></span>. There is no general <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed-form expression</a> for the <a href="/wiki/Median" title="Median">median</a> of the beta distribution for arbitrary values of <i>α</i> and <i>β</i>. <a href="/wiki/Closed-form_expression" title="Closed-form expression">Closed-form expressions</a> for particular values of the parameters <i>α</i> and <i>β</i> follow:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2013)">citation needed</span></a></i>&#93;</sup>
</p>
<ul><li>For symmetric cases <i>α</i> = <i>β</i>, median = 1/2.</li>
<li>For <i>α</i> = 1 and <i>β</i> &gt; 0, median <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =1-2^{-1/\beta }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msup>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle =1-2^{-1/\beta }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa00571487d3351617d6e32c47662994f9f55b9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.715ex; height:3.009ex;" alt="{\displaystyle =1-2^{-1/\beta }}"></span> (this case is the <a href="/wiki/Mirror_image" title="Mirror image">mirror-image</a> of the power function [0,1] distribution)</li>
<li>For <i>α</i> &gt; 0 and <i>β</i> = 1, median = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{-1/\alpha }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msup>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 2^{-1/\alpha }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e980502f2881b1aef6067b05e7c704834bf00297" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.369ex; height:2.843ex;" alt="{\displaystyle 2^{-1/\alpha }}"></span> (this case is the power function [0,1] distribution<sup id="cite_ref-Handbook_of_Beta_Distribution_8-1" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup>)</li>
<li>For <i>α</i> = 3 and <i>β</i> = 2, median = 0.6142724318676105..., the real solution to the <a href="/wiki/Quartic_function" title="Quartic function">quartic equation</a> 1 8<i>x</i><sup>3</sup> + 6<i>x</i><sup>4</sup> = 0, which lies in [0,1].</li>
<li>For <i>α</i> = 2 and <i>β</i> = 3, median = 0.38572756813238945... = 1median(Beta(3, 2))</li></ul>
<p>The following are the limits with one parameter finite (non-zero) and the other approaching these limits:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2013)">citation needed</span></a></i>&#93;</sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}{\text{median}}=\lim _{\alpha \to \infty }{\text{median}}=1,\\\lim _{\alpha \to 0}{\text{median}}=\lim _{\beta \to \infty }{\text{median}}=0.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<mn>0.</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\beta \to 0}{\text{median}}=\lim _{\alpha \to \infty }{\text{median}}=1,\\\lim _{\alpha \to 0}{\text{median}}=\lim _{\beta \to \infty }{\text{median}}=0.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfb9ecb081e25c8eb5633c4e1ad99a00924d9f96" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:32.002ex; height:9.176ex;" alt=" \begin{align}&#10;\lim_{\beta \to 0} \text{median}= \lim_{\alpha \to \infty} \text{median} = 1,\\&#10;\lim_{\alpha\to 0} \text{median}= \lim_{\beta \to \infty} \text{median} = 0.&#10;\end{align}"></span></dd></dl>
<p>A reasonable approximation of the value of the median of the beta distribution, for both α and β greater or equal to one, is given by the formula<sup id="cite_ref-Kerman2011_9-0" class="reference"><a href="#cite_note-Kerman2011-9">&#91;9&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{median}}\approx {\frac {\alpha -{\tfrac {1}{3}}}{\alpha +\beta -{\tfrac {2}{3}}}}{\text{ for }}\alpha ,\beta \geq 1.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>2</mn>
<mn>3</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;for&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2265;<!-- ≥ --></mo>
<mn>1.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{median}}\approx {\frac {\alpha -{\tfrac {1}{3}}}{\alpha +\beta -{\tfrac {2}{3}}}}{\text{ for }}\alpha ,\beta \geq 1.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90cd0f42e583dd11e7add651ef1851597d88f184" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:34.164ex; height:8.176ex;" alt="\text{median} \approx \frac{\alpha - \tfrac{1}{3}}{\alpha + \beta - \tfrac{2}{3}} \text{ for } \alpha, \beta \ge 1."></span></dd></dl>
<p>When α, β ≥ 1, the <a href="/wiki/Relative_error" class="mw-redirect" title="Relative error">relative error</a> (the <a href="/wiki/Approximation_error" title="Approximation error">absolute error</a> divided by the median) in this approximation is less than 4% and for both α ≥ 2 and β ≥ 2 it is less than 1%. The <a href="/wiki/Approximation_error" title="Approximation error">absolute error</a> divided by the difference between the mean and the mode is similarly small:
</p><p><span typeof="mw:File"><a href="/wiki/File:Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description" title="Abs[(Median-Appr.)/Median] for Beta distribution for 1 ≤ α ≤ 5 and 1 ≤ β ≤ 5"><img alt="Abs[(Median-Appr.)/Median] for Beta distribution for 1 ≤ α ≤ 5 and 1 ≤ β ≤ 5" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/a/af/Relative_Error_for_Approximation_to_Median_of_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="633" data-file-height="370" /></a></span><span typeof="mw:File"><a href="/wiki/File:Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description" title="Abs[(Median-Appr.)/(Mean-Mode)] for Beta distribution for 1≤α≤5 and 1≤β≤5"><img alt="Abs[(Median-Appr.)/(Mean-Mode)] for Beta distribution for 1≤α≤5 and 1≤β≤5" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="192" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/650px-Error_in_Median_Apprx._relative_to_Mean-Mode_distance_for_Beta_Distribution_with_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="663" data-file-height="392" /></a></span>
</p>
<h4><span class="mw-headline" id="Mean">Mean</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=14" title="Edit section: Mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/325px-Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/12/Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/488px-Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/1/12/Mean_Beta_Distribution_for_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 2x" data-file-width="633" data-file-height="370" /></a><figcaption>Mean for Beta distribution for <span class="nowrap">0 ≤ <i>α</i> ≤ 5</span> and <span class="nowrap">0 ≤ <i>β</i> ≤ 5</span></figcaption></figure>
<p>The <a href="/wiki/Expected_value" title="Expected value">expected value</a> (mean) (<i>μ</i>) of a Beta distribution <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> with two parameters <i>α</i> and <i>β</i> is a function of only the ratio <i>β</i>/<i>α</i> of these parameters:<sup id="cite_ref-JKB_1-3" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu =\operatorname {E} [X]&amp;=\int _{0}^{1}xf(x;\alpha ,\beta )\,dx\\&amp;=\int _{0}^{1}x\,{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\,dx\\&amp;={\frac {\alpha }{\alpha +\beta }}\\&amp;={\frac {1}{1+{\frac {\beta }{\alpha }}}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>x</mi>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>x</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu =\operatorname {E} [X]&amp;=\int _{0}^{1}xf(x;\alpha ,\beta )\,dx\\&amp;=\int _{0}^{1}x\,{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\,dx\\&amp;={\frac {\alpha }{\alpha +\beta }}\\&amp;={\frac {1}{1+{\frac {\beta }{\alpha }}}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9137834d9d47360ed6c23550c6236fed5fd35f7" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -12.338ex; width:37.729ex; height:25.843ex;" alt=" \begin{align}&#10;\mu = \operatorname{E}[X]&#10; &amp;= \int_0^1 x f(x;\alpha,\beta)\,dx \\&#10; &amp;= \int_0^1 x \,\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\Beta(\alpha,\beta)}\,dx \\&#10; &amp;= \frac{\alpha}{\alpha + \beta} \\&#10; &amp;= \frac{1}{1 + \frac{\beta}{\alpha}}&#10;\end{align}"></span></dd></dl>
<p>Letting <span class="nowrap"><i>α</i> = <i>β</i></span> in the above expression one obtains <span class="nowrap"><i>μ</i> = 1/2</span>, showing that for <span class="nowrap"><i>α</i> = <i>β</i></span> the mean is at the center of the distribution: it is symmetric. Also, the following limits can be obtained from the above expression:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{{\frac {\beta }{\alpha }}\to 0}\mu =1\\\lim _{{\frac {\beta }{\alpha }}\to \infty }\mu =0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{{\frac {\beta }{\alpha }}\to 0}\mu =1\\\lim _{{\frac {\beta }{\alpha }}\to \infty }\mu =0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89775a4dd28774cf29d02e7bc054848f5d617946" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:11.778ex; height:11.509ex;" alt=" \begin{align}&#10;\lim_{\frac{\beta}{\alpha} \to 0} \mu = 1\\&#10;\lim_{\frac{\beta}{\alpha} \to \infty} \mu = 0&#10;\end{align}"></span></dd></dl>
<p>Therefore, for <i>β</i>/<i>α</i> → 0, or for <i>α</i>/<i>β</i> → ∞, the mean is located at the right end, <span class="nowrap"><i>x</i> = 1</span>. For these limit ratios, the beta distribution becomes a one-point <a href="/wiki/Degenerate_distribution" title="Degenerate distribution">degenerate distribution</a> with a <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> spike at the right end, <span class="nowrap"><i>x</i> = 1</span>, with probability&#160;1, and zero probability everywhere else. There is 100% probability (absolute certainty) concentrated at the right end, <span class="nowrap"><i>x</i> = 1</span>.
</p><p>Similarly, for <i>β</i>/<i>α</i> → ∞, or for <i>α</i>/<i>β</i> → 0, the mean is located at the left end, <span class="nowrap"><i>x</i> = 0</span>. The beta distribution becomes a 1-point <a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate distribution</a> with a <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> spike at the left end, <i>x</i> = 0, with probability 1, and zero probability everywhere else. There is 100% probability (absolute certainty) concentrated at the left end, <i>x</i> = 0. Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}\mu =\lim _{\alpha \to \infty }\mu =1\\\lim _{\alpha \to 0}\mu =\lim _{\beta \to \infty }\mu =0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\beta \to 0}\mu =\lim _{\alpha \to \infty }\mu =1\\\lim _{\alpha \to 0}\mu =\lim _{\beta \to \infty }\mu =0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79321fbb81bc184dbb8f51471b36495d844c7a14" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:19.434ex; height:9.176ex;" alt=" \begin{align}&#10;\lim_{\beta \to 0} \mu = \lim_{\alpha \to \infty} \mu = 1\\&#10;\lim_{\alpha\to 0} \mu = \lim_{\beta \to \infty} \mu = 0&#10;\end{align}"></span></dd></dl>
<p>While for typical unimodal distributions (with centrally located modes, inflexion points at both sides of the mode, and longer tails) (with Beta(<i>α</i>,&#160;<i>β</i>) such that <span class="nowrap"><i>α</i>, <i>β</i> &gt; 2</span>) it is known that the sample mean (as an estimate of location) is not as <a href="/wiki/Robust_statistics" title="Robust statistics">robust</a> as the sample median, the opposite is the case for uniform or "U-shaped" bimodal distributions (with Beta(<i>α</i>,&#160;<i>β</i>) such that <span class="nowrap"><i>α</i>, <i>β</i> ≤ 1</span>), with the modes located at the ends of the distribution. As Mosteller and Tukey remark (<sup id="cite_ref-MostellerTukey_10-0" class="reference"><a href="#cite_note-MostellerTukey-10">&#91;10&#93;</a></sup> p.&#160;207) "the average of the two extreme observations uses all the sample information. This illustrates how, for short-tailed distributions, the extreme observations should get more weight." By contrast, it follows that the median of "U-shaped" bimodal distributions with modes at the edge of the distribution (with Beta(<i>α</i>,&#160;<i>β</i>) such that <span class="nowrap"><i>α</i>, <i>β</i> ≤ 1</span>) is not robust, as the sample median drops the extreme sample observations from consideration. A practical application of this occurs for example for <a href="/wiki/Random_walk" title="Random walk">random walks</a>, since the probability for the time of the last visit to the origin in a random walk is distributed as the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a> Beta(1/2,&#160;1/2):<sup id="cite_ref-Feller_5-1" class="reference"><a href="#cite_note-Feller-5">&#91;5&#93;</a></sup><sup id="cite_ref-WillyFeller1_11-0" class="reference"><a href="#cite_note-WillyFeller1-11">&#91;11&#93;</a></sup> the mean of a number of <a href="/wiki/Realization_(probability)" title="Realization (probability)">realizations</a> of a random walk is a much more robust estimator than the median (which is an inappropriate sample measure estimate in this case).
</p>
<h4><span class="mw-headline" id="Geometric_mean">Geometric mean</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=15" title="Edit section: Geometric mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:(Mean_-_GeometricMean)_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/220px-%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" decoding="async" width="220" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9f/%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/330px-%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9f/%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/440px-%28Mean_-_GeometricMean%29_for_Beta_Distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 2x" data-file-width="1569" data-file-height="1068" /></a><figcaption>(Mean GeometricMean) for Beta distribution versus <i>α</i> and <i>β</i> from 0 to 2, showing the asymmetry between <i>α</i> and <i>β</i> for the geometric mean</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Geometric_Means_for_Beta_distribution_Purple%3DG(X),_Yellow%3DG(1-X),_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/220px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg" decoding="async" width="220" height="106" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/330px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/440px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg 2x" data-file-width="1746" data-file-height="845" /></a><figcaption>Geometric means for Beta distribution Purple = <i>G</i>(<i>x</i>), Yellow = <i>G</i>(1&#160;&#160;<i>x</i>), smaller values <i>α</i> and <i>β</i> in front</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Geometric_Means_for_Beta_distribution_Purple%3DG(X),_Yellow%3DG(1-X),_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/220px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg" decoding="async" width="220" height="107" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/330px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/440px-Geometric_Means_for_Beta_distribution_Purple%3DG%28X%29%2C_Yellow%3DG%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg 2x" data-file-width="1646" data-file-height="797" /></a><figcaption>Geometric means for Beta distribution. purple = <i>G</i>(<i>x</i>), yellow = <i>G</i>(1&#160;&#160;<i>x</i>), larger values <i>α</i> and <i>β</i> in front</figcaption></figure>
<p>The logarithm of the <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> <i>G<sub>X</sub></i> of a distribution with <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> is the arithmetic mean of ln(<i>X</i>), or, equivalently, its expected value:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln G_{X}=\operatorname {E} [\ln X]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln G_{X}=\operatorname {E} [\ln X]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b67cb73b90bc0e09ba41003b44f84b6e1d3feb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.067ex; height:2.843ex;" alt="\ln G_X = \operatorname{E}[\ln X]"></span></dd></dl>
<p>For a beta distribution, the expected value integral gives:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [\ln X]&amp;=\int _{0}^{1}\ln x\,f(x;\alpha ,\beta )\,dx\\[4pt]&amp;=\int _{0}^{1}\ln x\,{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}\,\int _{0}^{1}{\frac {\partial x^{\alpha -1}(1-x)^{\beta -1}}{\partial \alpha }}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial }{\partial \alpha }}\int _{0}^{1}x^{\alpha -1}(1-x)^{\beta -1}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \alpha }}\\[4pt]&amp;=\psi (\alpha )-\psi (\alpha +\beta )\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>x</mi>
<mspace width="thinmathspace" />
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>x</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [\ln X]&amp;=\int _{0}^{1}\ln x\,f(x;\alpha ,\beta )\,dx\\[4pt]&amp;=\int _{0}^{1}\ln x\,{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}\,\int _{0}^{1}{\frac {\partial x^{\alpha -1}(1-x)^{\beta -1}}{\partial \alpha }}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial }{\partial \alpha }}\int _{0}^{1}x^{\alpha -1}(1-x)^{\beta -1}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \alpha }}\\[4pt]&amp;=\psi (\alpha )-\psi (\alpha +\beta )\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd9db519e08e3c72cd6f9e2f0c90a7c57bdba035" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -26.838ex; width:45.175ex; height:54.843ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [\ln X]&amp;=\int _{0}^{1}\ln x\,f(x;\alpha ,\beta )\,dx\\[4pt]&amp;=\int _{0}^{1}\ln x\,{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}\,\int _{0}^{1}{\frac {\partial x^{\alpha -1}(1-x)^{\beta -1}}{\partial \alpha }}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial }{\partial \alpha }}\int _{0}^{1}x^{\alpha -1}(1-x)^{\beta -1}\,dx\\[4pt]&amp;={\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\frac {\partial \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}\\[4pt]&amp;={\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \alpha }}\\[4pt]&amp;=\psi (\alpha )-\psi (\alpha +\beta )\end{aligned}}}"></span></dd></dl>
<p>where <i>ψ</i> is the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a>.
</p><p>Therefore, the geometric mean of a beta distribution with shape parameters <i>α</i> and <i>β</i> is the exponential of the digamma functions of <i>α</i> and <i>β</i> as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{X}=e^{\operatorname {E} [\ln X]}=e^{\psi (\alpha )-\psi (\alpha +\beta )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
</msup>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{X}=e^{\operatorname {E} [\ln X]}=e^{\psi (\alpha )-\psi (\alpha +\beta )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c93ffa7f0155fa3816fcb151c3eb677700aabca2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.781ex; height:3.176ex;" alt="G_X =e^{\operatorname{E}[\ln X]}= e^{\psi(\alpha) - \psi(\alpha + \beta)}"></span></dd></dl>
<p>While for a beta distribution with equal shape parameters α = β, it follows that skewness = 0 and mode = mean = median = 1/2, the geometric mean is less than 1/2: <span class="nowrap">0 &lt; <i>G</i><sub><i>X</i></sub> &lt; 1/2</span>. The reason for this is that the logarithmic transformation strongly weights the values of <i>X</i> close to zero, as ln(<i>X</i>) strongly tends towards negative infinity as <i>X</i> approaches zero, while ln(<i>X</i>) flattens towards zero as <span class="nowrap"><i>X</i> → 1</span>.
</p><p>Along a line <span class="nowrap"><i>α</i> = <i>β</i></span>, the following limits apply:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}G_{X}=0\\&amp;\lim _{\alpha =\beta \to \infty }G_{X}={\tfrac {1}{2}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}G_{X}=0\\&amp;\lim _{\alpha =\beta \to \infty }G_{X}={\tfrac {1}{2}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f79aaab766e7ff7eadf78bed8e0ba71401906469" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:16.3ex; height:9.509ex;" alt=" \begin{align}&#10;&amp;\lim_{\alpha = \beta \to 0} G_X = 0 \\&#10;&amp;\lim_{\alpha = \beta \to \infty} G_X =\tfrac{1}{2}&#10;\end{align}"></span></dd></dl>
<p>Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}G_{X}=\lim _{\alpha \to \infty }G_{X}=1\\\lim _{\alpha \to 0}G_{X}=\lim _{\beta \to \infty }G_{X}=0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\beta \to 0}G_{X}=\lim _{\alpha \to \infty }G_{X}=1\\\lim _{\alpha \to 0}G_{X}=\lim _{\beta \to \infty }G_{X}=0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17991f065f9f550de7ce3f62d4f6c0818871b4ff" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:23.548ex; height:9.176ex;" alt=" \begin{align}&#10;\lim_{\beta \to 0} G_X = \lim_{\alpha \to \infty} G_X = 1\\&#10;\lim_{\alpha\to 0} G_X = \lim_{\beta \to \infty} G_X = 0&#10;\end{align}"></span></dd></dl>
<p>The accompanying plot shows the difference between the mean and the geometric mean for shape parameters α and β from zero to 2. Besides the fact that the difference between them approaches zero as α and β approach infinity and that the difference becomes large for values of α and β approaching zero, one can observe an evident asymmetry of the geometric mean with respect to the shape parameters α and β. The difference between the geometric mean and the mean is larger for small values of α in relation to β than when exchanging the magnitudes of β and α.
</p><p><a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N. L.Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S. Kotz</a><sup id="cite_ref-JKB_1-4" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> suggest the logarithmic approximation to the digamma function <i>ψ</i>(<i>α</i>) ≈ ln(<i>α</i>&#160;&#160;1/2) which results in the following approximation to the geometric mean:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{X}\approx {\frac {\alpha \,-{\frac {1}{2}}}{\alpha +\beta -{\frac {1}{2}}}}{\text{ if }}\alpha ,\beta &gt;1.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{X}\approx {\frac {\alpha \,-{\frac {1}{2}}}{\alpha +\beta -{\frac {1}{2}}}}{\text{ if }}\alpha ,\beta &gt;1.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b99248644aa6d645f217ee91b14fd9dc653c044e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:28.834ex; height:7.843ex;" alt="G_X \approx \frac{\alpha \, - \frac{1}{2}}{\alpha +\beta - \frac{1}{2}}\text{ if } \alpha, \beta &gt; 1."></span></dd></dl>
<p>Numerical values for the <a href="/wiki/Relative_error" class="mw-redirect" title="Relative error">relative error</a> in this approximation follow: [<span class="nowrap">(<i>α</i> = <i>β</i> = 1): 9.39%</span>]; [<span class="nowrap">(<i>α</i> = <i>β</i> = 2): 1.29%</span>]; [<span class="nowrap">(<i>α</i> = 2, <i>β</i> = 3): 1.51%</span>]; [<span class="nowrap">(<i>α</i> = 3, <i>β</i> = 2): 0.44%</span>]; [<span class="nowrap">(<i>α</i> = <i>β</i> = 3): 0.51%</span>]; [<span class="nowrap">(<i>α</i> = <i>β</i> = 4): 0.26%</span>]; [<span class="nowrap">(<i>α</i> = 3, <i>β</i> = 4): 0.55%</span>]; [<span class="nowrap">(<i>α</i> = 4, <i>β</i> = 3): 0.24%</span>].
</p><p>Similarly, one can calculate the value of shape parameters required for the geometric mean to equal&#160;1/2. Given the value of the parameter <i>β</i>, what would be the value of the other parameter,&#160;<i>α</i>, required for the geometric mean to equal&#160;1/2?. The answer is that (for <span class="nowrap"><i>β</i> &gt; 1</span>), the value of <i>α</i> required tends towards <span class="nowrap"><i>β</i> + 1/2</span> as <span class="nowrap"><i>β</i> → ∞</span>. For example, all these couples have the same geometric mean of&#160;1/2: [<span class="nowrap"><i>β</i> = 1, <i>α</i> = 1.4427</span>], [<span class="nowrap"><i>β</i> = 2, <i>α</i> = 2.46958</span>], [<span class="nowrap"><i>β</i> = 3, <i>α</i> = 3.47943</span>], [<span class="nowrap"><i>β</i> = 4, <i>α</i> = 4.48449</span>], [<span class="nowrap"><i>β</i> = 5, <i>α</i> = 5.48756</span>], [<span class="nowrap"><i>β</i> = 10, <i>α</i> = 10.4938</span>], [<span class="nowrap"><i>β</i> = 100, <i>α</i> = 100.499</span>].
</p><p>The fundamental property of the geometric mean, which can be proven to be false for any other mean, is
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\left({\frac {X_{i}}{Y_{i}}}\right)={\frac {G(X_{i})}{G(Y_{i})}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>G</mi>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>G</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>G</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G\left({\frac {X_{i}}{Y_{i}}}\right)={\frac {G(X_{i})}{G(Y_{i})}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2900327a2b755658860d2e4455dd8e1296a1e25c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.49ex; height:6.509ex;" alt="G\left(\frac{X_i}{Y_i}\right) = \frac{G(X_i)}{G(Y_i)}"></span></dd></dl>
<p>This makes the geometric mean the only correct mean when averaging <i>normalized</i> results, that is results that are presented as ratios to reference values.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12">&#91;12&#93;</a></sup> This is relevant because the beta distribution is a suitable model for the random behavior of percentages and it is particularly suitable to the statistical modelling of proportions. The geometric mean plays a central role in maximum likelihood estimation, see section "Parameter estimation, maximum likelihood." Actually, when performing maximum likelihood estimation, besides the <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> <i>G<sub>X</sub></i> based on the random variable X, also another geometric mean appears naturally: the <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> based on the linear transformation <span class="nowrap">(1 <i>X</i>)</span>, the mirror-image of <i>X</i>, denoted by <i>G</i><sub>(1<i>X</i>)</sub>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{(1-X)}=e^{\operatorname {E} [\ln(1-X)]}=e^{\psi (\beta )-\psi (\alpha +\beta )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
</msup>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{(1-X)}=e^{\operatorname {E} [\ln(1-X)]}=e^{\psi (\beta )-\psi (\alpha +\beta )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8013e6a62bd5140a4e7919686761225dd54847e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:34.044ex; height:3.676ex;" alt="G_{(1-X)} = e^{\operatorname{E}[\ln(1-X)] } = e^{\psi(\beta) - \psi(\alpha + \beta)}"></span></dd></dl>
<p>Along a line <span class="nowrap"><i>α</i> = <i>β</i></span>, the following limits apply:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}G_{(1-X)}=0\\&amp;\lim _{\alpha =\beta \to \infty }G_{(1-X)}={\tfrac {1}{2}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}G_{(1-X)}=0\\&amp;\lim _{\alpha =\beta \to \infty }G_{(1-X)}={\tfrac {1}{2}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b51d8af25a5a92708671ddcb7512d808cd7176ef" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:19.68ex; height:9.509ex;" alt=" \begin{align}&#10;&amp;\lim_{\alpha = \beta \to 0} G_{(1-X)} =0 \\&#10;&amp;\lim_{\alpha = \beta \to \infty} G_{(1-X)} =\tfrac{1}{2}&#10;\end{align}"></span></dd></dl>
<p>Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}G_{(1-X)}=\lim _{\alpha \to \infty }G_{(1-X)}=0\\\lim _{\alpha \to 0}G_{(1-X)}=\lim _{\beta \to \infty }G_{(1-X)}=1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\beta \to 0}G_{(1-X)}=\lim _{\alpha \to \infty }G_{(1-X)}=0\\\lim _{\alpha \to 0}G_{(1-X)}=\lim _{\beta \to \infty }G_{(1-X)}=1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b3abc831911811340bd23f919c81b72ba4cbdbe" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:30.308ex; height:9.176ex;" alt=" \begin{align}&#10;\lim_{\beta \to 0} G_{(1-X)} = \lim_{\alpha \to \infty} G_{(1-X)} = 0\\&#10;\lim_{\alpha\to 0} G_{(1-X)} = \lim_{\beta \to \infty} G_{(1-X)} = 1&#10;\end{align}"></span></dd></dl>
<p>It has the following approximate value:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{(1-X)}\approx {\frac {\beta -{\frac {1}{2}}}{\alpha +\beta -{\frac {1}{2}}}}{\text{ if }}\alpha ,\beta &gt;1.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{(1-X)}\approx {\frac {\beta -{\frac {1}{2}}}{\alpha +\beta -{\frac {1}{2}}}}{\text{ if }}\alpha ,\beta &gt;1.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d7459baac164c2fedfad9dd8316320553e3d10" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:32.213ex; height:7.843ex;" alt="G_{(1-X)} \approx \frac{\beta - \frac{1}{2}}{\alpha+\beta-\frac{1}{2}}\text{ if } \alpha, \beta &gt; 1."></span></dd></dl>
<p>Although both <i>G</i><sub><i>X</i></sub> and <i>G</i><sub>(1<i>X</i>)</sub> are asymmetric, in the case that both shape parameters are equal <span class="nowrap"><i>α</i> = <i>β</i></span>, the geometric means are equal: <i>G</i><sub><i>X</i></sub> = <i>G</i><sub>(1<i>X</i>)</sub>. This equality follows from the following symmetry displayed between both geometric means:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{X}(\mathrm {B} (\alpha ,\beta ))=G_{(1-X)}(\mathrm {B} (\beta ,\alpha )).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{X}(\mathrm {B} (\alpha ,\beta ))=G_{(1-X)}(\mathrm {B} (\beta ,\alpha )).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac79f068c4c9515f383f2dcf32b033ef48c455f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:32.279ex; height:3.176ex;" alt="G_X (\Beta(\alpha, \beta) )=G_{(1-X)}(\Beta(\beta, \alpha) ). "></span></dd></dl>
<h4><span class="mw-headline" id="Harmonic_mean">Harmonic mean</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=16" title="Edit section: Harmonic mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/220px-Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg" decoding="async" width="220" height="114" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/330px-Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/440px-Harmonic_mean_for_Beta_distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg 2x" data-file-width="1704" data-file-height="885" /></a><figcaption>Harmonic mean for beta distribution for 0&#160;&lt;&#160;<i>α</i>&#160;&lt;&#160;5 and 0&#160;&lt;&#160;<i>β</i>&#160;&lt;&#160;5</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:(Mean_-_HarmonicMean)_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/220px-%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg" decoding="async" width="220" height="44" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/330px-%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg/440px-%28Mean_-_HarmonicMean%29_for_Beta_distribution_versus_alpha_and_beta_from_0_to_2_-_J._Rodal.jpg 2x" data-file-width="2342" data-file-height="471" /></a><figcaption>Harmonic mean for beta distribution versus <i>α</i> and <i>β</i> from 0 to 2</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Harmonic_Means_for_Beta_distribution_Purple%3DH(X),_Yellow%3DH(1-X),_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/220px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg" decoding="async" width="220" height="127" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/330px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg/440px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_smaller_values_alpha_and_beta_in_front_-_J._Rodal.jpg 2x" data-file-width="1378" data-file-height="797" /></a><figcaption>Harmonic means for beta distribution Purple = <i>H</i>(<i>X</i>), Yellow = <i>H</i>(1&#160;&#160;<i>X</i>), smaller values <i>α</i> and <i>β</i> in front</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Harmonic_Means_for_Beta_distribution_Purple%3DH(X),_Yellow%3DH(1-X),_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/220px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg" decoding="async" width="220" height="107" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/00/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/330px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/00/Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg/440px-Harmonic_Means_for_Beta_distribution_Purple%3DH%28X%29%2C_Yellow%3DH%281-X%29%2C_larger_values_alpha_and_beta_in_front_-_J._Rodal.jpg 2x" data-file-width="1610" data-file-height="781" /></a><figcaption>Harmonic Means for Beta distribution Purple = <i>H</i>(<i>X</i>), Yellow = <i>H</i>(1&#160;&#160;<i>X</i>), larger values <i>α</i> and <i>β</i> in front</figcaption></figure>
<p>The inverse of the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> (<i>H<sub>X</sub></i>) of a distribution with <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> is the arithmetic mean of 1/<i>X</i>, or, equivalently, its expected value. Therefore, the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> (<i>H<sub>X</sub></i>) of a beta distribution with shape parameters <i>α</i> and <i>β</i> is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}H_{X}&amp;={\frac {1}{\operatorname {E} \left[{\frac {1}{X}}\right]}}\\&amp;={\frac {1}{\int _{0}^{1}{\frac {f(x;\alpha ,\beta )}{x}}\,dx}}\\&amp;={\frac {1}{\int _{0}^{1}{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{x\mathrm {B} (\alpha ,\beta )}}\,dx}}\\&amp;={\frac {\alpha -1}{\alpha +\beta -1}}{\text{ if }}\alpha &gt;1{\text{ and }}\beta &gt;0\\\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mi>x</mi>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;and&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}H_{X}&amp;={\frac {1}{\operatorname {E} \left[{\frac {1}{X}}\right]}}\\&amp;={\frac {1}{\int _{0}^{1}{\frac {f(x;\alpha ,\beta )}{x}}\,dx}}\\&amp;={\frac {1}{\int _{0}^{1}{\frac {x^{\alpha -1}(1-x)^{\beta -1}}{x\mathrm {B} (\alpha ,\beta )}}\,dx}}\\&amp;={\frac {\alpha -1}{\alpha +\beta -1}}{\text{ if }}\alpha &gt;1{\text{ and }}\beta &gt;0\\\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7d99dd7493b9c085cd5d407861730e2a2abf6c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -13.999ex; margin-bottom: -0.172ex; width:36.683ex; height:29.509ex;" alt=" \begin{align}&#10;H_X &amp;= \frac{1}{\operatorname{E}\left[\frac{1}{X}\right]} \\&#10; &amp;=\frac{1}{\int_0^1 \frac{f(x;\alpha,\beta)}{x}\,dx} \\&#10; &amp;=\frac{1}{\int_0^1 \frac{x^{\alpha-1}(1-x)^{\beta-1}}{x \Beta(\alpha,\beta)}\,dx} \\&#10; &amp;= \frac{\alpha - 1}{\alpha + \beta - 1}\text{ if } \alpha &gt; 1 \text{ and } \beta &gt; 0 \\&#10;\end{align}"></span></dd></dl>
<p>The <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> (<i>H<sub>X</sub></i>) of a Beta distribution with <i>α</i> &lt; 1 is undefined, because its defining expression is not bounded in [0, 1] for shape parameter <i>α</i> less than unity.
</p><p>Letting <i>α</i> = <i>β</i> in the above expression one obtains
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{X}={\frac {\alpha -1}{2\alpha -1}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H_{X}={\frac {\alpha -1}{2\alpha -1}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0748b4780dc8ea57db97db149af39c2c37fcd769" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.798ex; height:5.343ex;" alt="H_X = \frac{\alpha-1}{2\alpha-1},"></span></dd></dl>
<p>showing that for <i>α</i> = <i>β</i> the harmonic mean ranges from 0, for <i>α</i> = <i>β</i> = 1, to 1/2, for <i>α</i> = <i>β</i> → ∞.
</p><p>Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}H_{X}{\text{ is undefined}}\\&amp;\lim _{\alpha \to 1}H_{X}=\lim _{\beta \to \infty }H_{X}=0\\&amp;\lim _{\beta \to 0}H_{X}=\lim _{\alpha \to \infty }H_{X}=1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;is undefined</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}H_{X}{\text{ is undefined}}\\&amp;\lim _{\alpha \to 1}H_{X}=\lim _{\beta \to \infty }H_{X}=0\\&amp;\lim _{\beta \to 0}H_{X}=\lim _{\alpha \to \infty }H_{X}=1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9c9be97ae581b7d1ba77fc375e8cedfd799bb4e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:24.144ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}H_{X}{\text{ is undefined}}\\&amp;\lim _{\alpha \to 1}H_{X}=\lim _{\beta \to \infty }H_{X}=0\\&amp;\lim _{\beta \to 0}H_{X}=\lim _{\alpha \to \infty }H_{X}=1\end{aligned}}}"></span></dd></dl>
<p>The harmonic mean plays a role in maximum likelihood estimation for the four parameter case, in addition to the geometric mean. Actually, when performing maximum likelihood estimation for the four parameter case, besides the harmonic mean <i>H<sub>X</sub></i> based on the random variable <i>X</i>, also another harmonic mean appears naturally: the harmonic mean based on the linear transformation (1&#160;&#160;<i>X</i>), the mirror-image of <i>X</i>, denoted by <i>H</i><sub>1&#160;&#160;<i>X</i></sub>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{1-X}={\frac {1}{\operatorname {E} \left[{\frac {1}{1-X}}\right]}}={\frac {\beta -1}{\alpha +\beta -1}}{\text{ if }}\beta &gt;1,{\text{ and }}\alpha &gt;0.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;and&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>0.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H_{1-X}={\frac {1}{\operatorname {E} \left[{\frac {1}{1-X}}\right]}}={\frac {\beta -1}{\alpha +\beta -1}}{\text{ if }}\beta &gt;1,{\text{ and }}\alpha &gt;0.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48f4fd69f20c4259cb8a50e754df8dfed5a1ddca" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:51.762ex; height:8.009ex;" alt="{\displaystyle H_{1-X}={\frac {1}{\operatorname {E} \left[{\frac {1}{1-X}}\right]}}={\frac {\beta -1}{\alpha +\beta -1}}{\text{ if }}\beta &gt;1,{\text{ and }}\alpha &gt;0.}"></span></dd></dl>
<p>The <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> (<i>H</i><sub>(1&#160;&#160;<i>X</i>)</sub>) of a Beta distribution with <i>β</i> &lt; 1 is undefined, because its defining expression is not bounded in [0, 1] for shape parameter <i>β</i> less than unity.
</p><p>Letting <i>α</i> = <i>β</i> in the above expression one obtains
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{(1-X)}={\frac {\beta -1}{2\beta -1}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>2</mn>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H_{(1-X)}={\frac {\beta -1}{2\beta -1}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e44f14a6bf3119656952a5ff13b75bc5b81cdec" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.022ex; height:5.843ex;" alt="H_{(1-X)} = \frac{\beta-1}{2\beta-1},"></span></dd></dl>
<p>showing that for <i>α</i> = <i>β</i> the harmonic mean ranges from 0, for <i>α</i> = <i>β</i> = 1, to 1/2, for <i>α</i> = <i>β</i> → ∞.
</p><p>Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}H_{1-X}{\text{ is undefined}}\\&amp;\lim _{\beta \to 1}H_{1-X}=\lim _{\alpha \to \infty }H_{1-X}=0\\&amp;\lim _{\alpha \to 0}H_{1-X}=\lim _{\beta \to \infty }H_{1-X}=1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;is undefined</mtext>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}H_{1-X}{\text{ is undefined}}\\&amp;\lim _{\beta \to 1}H_{1-X}=\lim _{\alpha \to \infty }H_{1-X}=0\\&amp;\lim _{\alpha \to 0}H_{1-X}=\lim _{\beta \to \infty }H_{1-X}=1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/383c5ac1f2d11de963103ce8fec670e2a5eba78c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:28.346ex; height:13.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}H_{1-X}{\text{ is undefined}}\\&amp;\lim _{\beta \to 1}H_{1-X}=\lim _{\alpha \to \infty }H_{1-X}=0\\&amp;\lim _{\alpha \to 0}H_{1-X}=\lim _{\beta \to \infty }H_{1-X}=1\end{aligned}}}"></span></dd></dl>
<p>Although both <i>H</i><sub><i>X</i></sub> and <i>H</i><sub>1<i>X</i></sub> are asymmetric, in the case that both shape parameters are equal <i>α</i> = <i>β</i>, the harmonic means are equal: <i>H</i><sub><i>X</i></sub> = <i>H</i><sub>1<i>X</i></sub>. This equality follows from the following symmetry displayed between both harmonic means:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{X}(\mathrm {B} (\alpha ,\beta ))=H_{1-X}(\mathrm {B} (\beta ,\alpha )){\text{ if }}\alpha ,\beta &gt;1.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H_{X}(\mathrm {B} (\alpha ,\beta ))=H_{1-X}(\mathrm {B} (\beta ,\alpha )){\text{ if }}\alpha ,\beta &gt;1.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e80c207c2d510bbda4077f80954f86f872c4986" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.843ex; height:2.843ex;" alt="{\displaystyle H_{X}(\mathrm {B} (\alpha ,\beta ))=H_{1-X}(\mathrm {B} (\beta ,\alpha )){\text{ if }}\alpha ,\beta &gt;1.}"></span></dd></dl>
<h3><span class="mw-headline" id="Measures_of_statistical_dispersion">Measures of statistical dispersion</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=17" title="Edit section: Measures of statistical dispersion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Variance">Variance</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=18" title="Edit section: Variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>The <a href="/wiki/Variance" title="Variance">variance</a> (the second moment centered on the mean) of a Beta distribution <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> with parameters α and β is:<sup id="cite_ref-JKB_1-5" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13">&#91;13&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (X)=\operatorname {E} [(X-\mu )^{2}]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (X)=\operatorname {E} [(X-\mu )^{2}]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d96555f71897dc80e2f31ec71b3cbfbcf39950bc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.082ex; height:6.176ex;" alt="\operatorname{var}(X) = \operatorname{E}[(X - \mu)^2] = \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}"></span></dd></dl>
<p>Letting α = β in the above expression one obtains
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (X)={\frac {1}{4(2\beta +1)}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (X)={\frac {1}{4(2\beta +1)}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ddb2c17489caef8b881faaf9005d70cbfdb113f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.141ex; height:6.009ex;" alt="\operatorname{var}(X) = \frac{1}{4(2\beta + 1)},"></span></dd></dl>
<p>showing that for <i>α</i> = <i>β</i> the variance decreases monotonically as <span class="nowrap"><i>α</i> = <i>β</i></span> increases. Setting <span class="nowrap"><i>α</i> = <i>β</i> = 0</span> in this expression, one finds the maximum variance var(<i>X</i>) = 1/4<sup id="cite_ref-JKB_1-6" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> which only occurs approaching the limit, at <span class="nowrap"><i>α</i> = <i>β</i> = 0</span>.
</p><p>The beta distribution may also be <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrized</a> in terms of its mean <i>μ</i> <span class="nowrap">(0 &lt; <i>μ</i> &lt; 1)</span> and sample size <span class="nowrap"><i>ν</i> = <i>α</i> + <i>β</i></span> (<span class="nowrap"><i>ν</i> &gt; 0</span>) (see subsection <a href="#Mean_and_sample_size">Mean and sample size</a>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0.</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e92c839dd907b8ba33fa862b19c4762327687aa" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.633ex; height:6.176ex;" alt=" \begin{align}&#10; \alpha &amp;= \mu \nu, \text{ where }\nu =(\alpha + \beta) &gt;0\\&#10; \beta &amp;= (1 - \mu) \nu, \text{ where }\nu =(\alpha + \beta) &gt;0.&#10;\end{align}"></span></dd></dl>
<p>Using this <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a>, one can express the variance in terms of the mean <i>μ</i> and the sample size <i>ν</i> as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (X)={\frac {\mu (1-\mu )}{1+\nu }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (X)={\frac {\mu (1-\mu )}{1+\nu }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c47a19d1f9adc5d491983b5709e2cf1b54ccdc7f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.641ex; height:5.843ex;" alt="\operatorname{var}(X) = \frac{\mu (1-\mu)}{1 + \nu}"></span></dd></dl>
<p>Since <span class="nowrap"><i>ν</i> = <i>α</i> + <i>β</i> &gt; 0</span>, it follows that <span class="nowrap">var(<i>X</i>) &lt; <i>μ</i>(1 <i>μ</i>)</span>.
</p><p>For a symmetric distribution, the mean is at the middle of the distribution, <span class="nowrap"><i>μ</i> = 1/2</span>, and therefore:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (X)={\frac {1}{4(1+\nu )}}{\text{ if }}\mu ={\tfrac {1}{2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (X)={\frac {1}{4(1+\nu )}}{\text{ if }}\mu ={\tfrac {1}{2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce5b637b913b97c48ca2fb6582eaf867338b149a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.91ex; height:6.009ex;" alt="\operatorname{var}(X) = \frac{1}{4 (1 + \nu)} \text{ if } \mu = \tfrac{1}{2}"></span></dd></dl>
<p>Also, the following limits (with only the noted variable approaching the limit) can be obtained from the above expressions:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}\operatorname {var} (X)=\lim _{\alpha \to 0}\operatorname {var} (X)=\lim _{\beta \to \infty }\operatorname {var} (X)=\lim _{\alpha \to \infty }\operatorname {var} (X)=\lim _{\nu \to \infty }\operatorname {var} (X)=\lim _{\mu \to 0}\operatorname {var} (X)=\lim _{\mu \to 1}\operatorname {var} (X)=0\\&amp;\lim _{\nu \to 0}\operatorname {var} (X)=\mu (1-\mu )\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}\operatorname {var} (X)=\lim _{\alpha \to 0}\operatorname {var} (X)=\lim _{\beta \to \infty }\operatorname {var} (X)=\lim _{\alpha \to \infty }\operatorname {var} (X)=\lim _{\nu \to \infty }\operatorname {var} (X)=\lim _{\mu \to 0}\operatorname {var} (X)=\lim _{\mu \to 1}\operatorname {var} (X)=0\\&amp;\lim _{\nu \to 0}\operatorname {var} (X)=\mu (1-\mu )\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9556d2f371caa92f7944bba49823d784fcbb32a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:102.896ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\beta \to 0}\operatorname {var} (X)=\lim _{\alpha \to 0}\operatorname {var} (X)=\lim _{\beta \to \infty }\operatorname {var} (X)=\lim _{\alpha \to \infty }\operatorname {var} (X)=\lim _{\nu \to \infty }\operatorname {var} (X)=\lim _{\mu \to 0}\operatorname {var} (X)=\lim _{\mu \to 1}\operatorname {var} (X)=0\\&amp;\lim _{\nu \to 0}\operatorname {var} (X)=\mu (1-\mu )\end{aligned}}}"></span></dd></dl>
<p><span typeof="mw:File"><a href="/wiki/File:Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/325px-Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="189" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/488px-Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg/650px-Variance_for_Beta_Distribution_for_alpha_and_beta_ranging_from_0_to_5_-_J._Rodal.jpg 2x" data-file-width="1055" data-file-height="612" /></a></span>
</p>
<h4><span class="mw-headline" id="Geometric_variance_and_covariance">Geometric variance and covariance</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=19" title="Edit section: Geometric variance and covariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png/220px-Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png/330px-Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png/440px-Beta_distribution_log_geometric_variances_front_view_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>log geometric variances vs. α and β</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png/220px-Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png/330px-Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png/440px-Beta_distribution_log_geometric_variances_back_view_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>log geometric variances vs. α and β</figcaption></figure>
<p>The logarithm of the geometric variance, ln(var<sub><i>GX</i></sub>), of a distribution with <a href="/wiki/Random_variable" title="Random variable">random variable</a> <i>X</i> is the second moment of the logarithm of <i>X</i> centered on the geometric mean of <i>X</i>, ln(<i>G<sub>X</sub></i>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln \operatorname {var} _{GX}&amp;=\operatorname {E} \left[(\ln X-\ln G_{X})^{2}\right]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} \left[\ln X])^{2}\right]\\&amp;=\operatorname {E} \left[(\ln X)^{2}\right]-(\operatorname {E} [\ln X])^{2}\\&amp;=\operatorname {var} [\ln X]\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mo>]</mo>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln \operatorname {var} _{GX}&amp;=\operatorname {E} \left[(\ln X-\ln G_{X})^{2}\right]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} \left[\ln X])^{2}\right]\\&amp;=\operatorname {E} \left[(\ln X)^{2}\right]-(\operatorname {E} [\ln X])^{2}\\&amp;=\operatorname {var} [\ln X]\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5737429860855b238c6ac72ae064e4bb6d8cb772" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.988ex; margin-bottom: -0.184ex; width:35.981ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}\ln \operatorname {var} _{GX}&amp;=\operatorname {E} \left[(\ln X-\ln G_{X})^{2}\right]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} \left[\ln X])^{2}\right]\\&amp;=\operatorname {E} \left[(\ln X)^{2}\right]-(\operatorname {E} [\ln X])^{2}\\&amp;=\operatorname {var} [\ln X]\end{aligned}}}"></span></dd></dl>
<p>and therefore, the geometric variance is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} _{GX}=e^{\operatorname {var} [\ln X]}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} _{GX}=e^{\operatorname {var} [\ln X]}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/524cf664ccfd5eb381fd1987926209f1c401a200" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.048ex; height:3.176ex;" alt="{\displaystyle \operatorname {var} _{GX}=e^{\operatorname {var} [\ln X]}}"></span></dd></dl>
<p>In the <a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a> matrix, and the curvature of the log <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a>, the logarithm of the geometric variance of the <a href="/wiki/Reflection_formula" title="Reflection formula">reflected</a> variable 1&#160;&#160;<i>X</i> and the logarithm of the geometric covariance between <i>X</i> and 1&#160;&#160;<i>X</i> appear:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln \operatorname {var_{G(1-X)}} &amp;=\operatorname {E} [(\ln(1-X)-\ln G_{1-X})^{2}]\\&amp;=\operatorname {E} [(\ln(1-X)-\operatorname {E} [\ln(1-X)])^{2}]\\&amp;=\operatorname {E} [(\ln(1-X))^{2}]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\operatorname {var} [\ln(1-X)]\\&amp;\\\operatorname {var_{G(1-X)}} &amp;=e^{\operatorname {var} [\ln(1-X)]}\\&amp;\\\ln \operatorname {cov_{G{X,1-X}}} &amp;=\operatorname {E} [(\ln X-\ln G_{X})(\ln(1-X)-\ln G_{1-X})]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} [\ln X])(\ln(1-X)-\operatorname {E} [\ln(1-X)])]\\&amp;=\operatorname {E} \left[\ln X\ln(1-X)\right]-\operatorname {E} [\ln X]\operatorname {E} [\ln(1-X)]\\&amp;=\operatorname {cov} [\ln X,\ln(1-X)]\\&amp;\\\operatorname {cov} _{G{X,(1-X)}}&amp;=e^{\operatorname {cov} [\ln X,\ln(1-X)]}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd />
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd />
</mtr>
<mtr>
<mtd>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">o</mi>
<msub>
<mi mathvariant="normal">v</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">X</mi>
<mo>,</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
</mrow>
</mrow>
</msub>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd />
</mtr>
<mtr>
<mtd>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
</msup>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln \operatorname {var_{G(1-X)}} &amp;=\operatorname {E} [(\ln(1-X)-\ln G_{1-X})^{2}]\\&amp;=\operatorname {E} [(\ln(1-X)-\operatorname {E} [\ln(1-X)])^{2}]\\&amp;=\operatorname {E} [(\ln(1-X))^{2}]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\operatorname {var} [\ln(1-X)]\\&amp;\\\operatorname {var_{G(1-X)}} &amp;=e^{\operatorname {var} [\ln(1-X)]}\\&amp;\\\ln \operatorname {cov_{G{X,1-X}}} &amp;=\operatorname {E} [(\ln X-\ln G_{X})(\ln(1-X)-\ln G_{1-X})]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} [\ln X])(\ln(1-X)-\operatorname {E} [\ln(1-X)])]\\&amp;=\operatorname {E} \left[\ln X\ln(1-X)\right]-\operatorname {E} [\ln X]\operatorname {E} [\ln(1-X)]\\&amp;=\operatorname {cov} [\ln X,\ln(1-X)]\\&amp;\\\operatorname {cov} _{G{X,(1-X)}}&amp;=e^{\operatorname {cov} [\ln X,\ln(1-X)]}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9951a17fba87115b493918bfd9271c8e2193d0a8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -20.671ex; width:61.439ex; height:42.509ex;" alt="{\displaystyle {\begin{aligned}\ln \operatorname {var_{G(1-X)}} &amp;=\operatorname {E} [(\ln(1-X)-\ln G_{1-X})^{2}]\\&amp;=\operatorname {E} [(\ln(1-X)-\operatorname {E} [\ln(1-X)])^{2}]\\&amp;=\operatorname {E} [(\ln(1-X))^{2}]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\operatorname {var} [\ln(1-X)]\\&amp;\\\operatorname {var_{G(1-X)}} &amp;=e^{\operatorname {var} [\ln(1-X)]}\\&amp;\\\ln \operatorname {cov_{G{X,1-X}}} &amp;=\operatorname {E} [(\ln X-\ln G_{X})(\ln(1-X)-\ln G_{1-X})]\\&amp;=\operatorname {E} [(\ln X-\operatorname {E} [\ln X])(\ln(1-X)-\operatorname {E} [\ln(1-X)])]\\&amp;=\operatorname {E} \left[\ln X\ln(1-X)\right]-\operatorname {E} [\ln X]\operatorname {E} [\ln(1-X)]\\&amp;=\operatorname {cov} [\ln X,\ln(1-X)]\\&amp;\\\operatorname {cov} _{G{X,(1-X)}}&amp;=e^{\operatorname {cov} [\ln X,\ln(1-X)]}\end{aligned}}}"></span></dd></dl>
<p>For a beta distribution, higher order logarithmic moments can be derived by using the representation of a beta distribution as a proportion of two Gamma distributions and differentiating through the integral. They can be expressed in terms of higher order poly-gamma functions. See the section <a href="#Moments_of_logarithmically_transformed_random_variables">§&#160;Moments of logarithmically transformed random variables</a>. The <a href="/wiki/Variance" title="Variance">variance</a> of the logarithmic variables and <a href="/wiki/Covariance" title="Covariance">covariance</a> of ln&#160;<i>X</i> and ln(1<i>X</i>) are:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e396e8700267735eb741f73e8906445579c43bc6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.742ex; height:2.843ex;" alt="\operatorname{var}[\ln X]= \psi_1(\alpha) - \psi_1(\alpha + \beta)"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70eefadef46c7d56cc13c8221aa3df1d71596b7f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.011ex; height:2.843ex;" alt="\operatorname{var}[\ln (1-X)] = \psi_1(\beta) - \psi_1(\alpha + \beta)"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7a515ada0b9d62c5a3a7b35662b03256d66e3b9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.731ex; height:2.843ex;" alt="\operatorname{cov}[\ln X, \ln(1-X)] = -\psi_1(\alpha+\beta)"></span></dd></dl>
<p>where the <b><a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a></b>, denoted ψ<sub>1</sub>(α), is the second of the <a href="/wiki/Polygamma_function" title="Polygamma function">polygamma functions</a>, and is defined as the derivative of the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{d\alpha ^{2}}}={\frac {d\,\psi (\alpha )}{d\alpha }}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>d</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>d</mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>d</mi>
<mspace width="thinmathspace" />
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>d</mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{d\alpha ^{2}}}={\frac {d\,\psi (\alpha )}{d\alpha }}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43725091f4128f40e6bf31acc29b2d5a4c8aaf68" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:30.529ex; height:6.176ex;" alt="\psi_1(\alpha) = \frac{d^2\ln\Gamma(\alpha)}{d\alpha^2}= \frac{d \, \psi(\alpha)}{d\alpha}."></span></dd></dl>
<p>Therefore,
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {var} _{GX}=\operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {var} _{GX}=\operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/194b00552edda5d8d026a24872cdb27b604516c9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.392ex; height:2.843ex;" alt="{\displaystyle \ln \operatorname {var} _{GX}=\operatorname {var} [\ln X]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {var} _{G(1-X)}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {var} _{G(1-X)}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96dd82553307c025c84da68a3c373aad7467abd2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:51.041ex; height:3.176ex;" alt="{\displaystyle \ln \operatorname {var} _{G(1-X)}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {cov} _{GX,1-X}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {cov} _{GX,1-X}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a793c0271e457f671edb0668edc15bbae8740f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.461ex; height:3.009ex;" alt="{\displaystyle \ln \operatorname {cov} _{GX,1-X}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )}"></span></dd></dl>
<p>The accompanying plots show the log geometric variances and log geometric covariance versus the shape parameters <i>α</i> and <i>β</i>. The plots show that the log geometric variances and log geometric covariance are close to zero for shape parameters α and β greater than 2, and that the log geometric variances rapidly rise in value for shape parameter values <i>α</i> and <i>β</i> less than unity. The log geometric variances are positive for all values of the shape parameters. The log geometric covariance is negative for all values of the shape parameters, and it reaches large negative values for <i>α</i> and <i>β</i> less than unity.
</p><p>Following are the limits with one parameter finite (non-zero) and the other approaching these limits:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\ln \operatorname {var} _{GX}=\lim _{\beta \to 0}\ln \operatorname {var} _{G(1-X)}=\infty \\&amp;\lim _{\beta \to 0}\ln \operatorname {var} _{GX}=\lim _{\alpha \to \infty }\ln \operatorname {var} _{GX}=\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {var} _{G(1-X)}=\lim _{\alpha \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=0\\&amp;\lim _{\beta \to \infty }\ln \operatorname {var} _{GX}=\psi _{1}(\alpha )\\&amp;\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)}=\psi _{1}(\beta )\\&amp;\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\beta )\\&amp;\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\alpha )\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\ln \operatorname {var} _{GX}=\lim _{\beta \to 0}\ln \operatorname {var} _{G(1-X)}=\infty \\&amp;\lim _{\beta \to 0}\ln \operatorname {var} _{GX}=\lim _{\alpha \to \infty }\ln \operatorname {var} _{GX}=\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {var} _{G(1-X)}=\lim _{\alpha \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=0\\&amp;\lim _{\beta \to \infty }\ln \operatorname {var} _{GX}=\psi _{1}(\alpha )\\&amp;\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)}=\psi _{1}(\beta )\\&amp;\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\beta )\\&amp;\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\alpha )\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11e06ebb5cdfed08dacfb6a4480a16d394a7ad29" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -12.64ex; margin-bottom: -0.198ex; width:116.059ex; height:26.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\ln \operatorname {var} _{GX}=\lim _{\beta \to 0}\ln \operatorname {var} _{G(1-X)}=\infty \\&amp;\lim _{\beta \to 0}\ln \operatorname {var} _{GX}=\lim _{\alpha \to \infty }\ln \operatorname {var} _{GX}=\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {var} _{G(1-X)}=\lim _{\alpha \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=\lim _{\beta \to \infty }\ln \operatorname {cov} _{GX,(1-X)}=0\\&amp;\lim _{\beta \to \infty }\ln \operatorname {var} _{GX}=\psi _{1}(\alpha )\\&amp;\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)}=\psi _{1}(\beta )\\&amp;\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\beta )\\&amp;\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)}=-\psi _{1}(\alpha )\end{aligned}}}"></span></dd></dl>
<p>Limits with two parameters varying:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)})=\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=0\\&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)})=\infty \\&amp;\lim _{\alpha \to 0}(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to 0}(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=-\infty \end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)})=\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=0\\&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)})=\infty \\&amp;\lim _{\alpha \to 0}(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to 0}(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=-\infty \end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bddeff859939cba195caabb8a8340195320ad31" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:104.408ex; height:13.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\ln \operatorname {var} _{G(1-X)})=\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=0\\&amp;\lim _{\alpha \to \infty }(\lim _{\beta \to 0}\ln \operatorname {var} _{GX})=\lim _{\beta \to \infty }(\lim _{\alpha \to 0}\ln \operatorname {var} _{G(1-X)})=\infty \\&amp;\lim _{\alpha \to 0}(\lim _{\beta \to 0}\ln \operatorname {cov} _{GX,(1-X)})=\lim _{\beta \to 0}(\lim _{\alpha \to 0}\ln \operatorname {cov} _{GX,(1-X)})=-\infty \end{aligned}}}"></span></dd></dl>
<p>Although both ln(var<sub><i>GX</i></sub>) and ln(var<sub><i>G</i>(1&#160;&#160;<i>X</i>)</sub>) are asymmetric, when the shape parameters are equal, α = β, one has: ln(var<sub><i>GX</i></sub>) = ln(var<sub><i>G(1X)</i></sub>). This equality follows from the following symmetry displayed between both log geometric variances:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {var} _{GX}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {var} _{G(1-X)}(\mathrm {B} (\beta ,\alpha )).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {var} _{GX}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {var} _{G(1-X)}(\mathrm {B} (\beta ,\alpha )).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73e9d65f936352d6c5ba0168fdc0a51177ec77ba" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.465ex; height:3.176ex;" alt="{\displaystyle \ln \operatorname {var} _{GX}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {var} _{G(1-X)}(\mathrm {B} (\beta ,\alpha )).}"></span></dd></dl>
<p>The log geometric covariance is symmetric:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d59fb83efc45a84f3606874dc5791681812ca46b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:49.154ex; height:3.176ex;" alt="{\displaystyle \ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov} _{GX,(1-X)}(\mathrm {B} (\beta ,\alpha ))}"></span></dd></dl>
<h4><span class="mw-headline" id="Mean_absolute_deviation_around_the_mean">Mean absolute deviation around the mean</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=20" title="Edit section: Mean absolute deviation around the mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/220px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg" decoding="async" width="220" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/330px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg/440px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_with_alpha_and_beta_from_0_to_5_-_J._Rodal.jpg 2x" data-file-width="1146" data-file-height="699" /></a><figcaption>Ratio of Mean Abs.Dev. to Std.Dev. for Beta distribution with α and β ranging from 0 to 5</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg/220px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg" decoding="async" width="220" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg/330px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg/440px-Ratio_of_Mean_Abs._Dev._to_Std.Dev._Beta_distribution_vs._nu_from_0_to_10_and_vs._mean_-_J._Rodal.jpg 2x" data-file-width="1146" data-file-height="699" /></a><figcaption>Ratio of Mean Abs.Dev. to Std.Dev. for Beta distribution with mean 0 ≤ μ ≤ 1 and sample size 0 &lt; ν ≤ 10</figcaption></figure>
<p>The <a href="/wiki/Mean_absolute_deviation" class="mw-redirect" title="Mean absolute deviation">mean absolute deviation</a> around the mean for the beta distribution with shape parameters α and β is:<sup id="cite_ref-Handbook_of_Beta_Distribution_8-2" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [|X-E[X]|]={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msup>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [|X-E[X]|]={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d1c6330a91df22b40cedc7903dbc70120d66cf9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.357ex; height:6.509ex;" alt="{\displaystyle \operatorname {E} [|X-E[X]|]={\frac {2\alpha ^{\alpha }\beta ^{\beta }}{\mathrm {B} (\alpha ,\beta )(\alpha +\beta )^{\alpha +\beta +1}}}}"></span></dd></dl>
<p>The mean absolute deviation around the mean is a more <a href="/wiki/Robust_statistics" title="Robust statistics">robust</a> <a href="/wiki/Estimator" title="Estimator">estimator</a> of <a href="/wiki/Statistical_dispersion" title="Statistical dispersion">statistical dispersion</a> than the standard deviation for beta distributions with tails and inflection points at each side of the mode, Beta(<i>α</i>,&#160;<i>β</i>) distributions with <i>α</i>,<i>β</i> &gt; 2, as it depends on the linear (absolute) deviations rather than the square deviations from the mean. Therefore, the effect of very large deviations from the mean are not as overly weighted.
</p><p>Using <a href="/wiki/Stirling%27s_approximation" title="Stirling&#39;s approximation">Stirling's approximation</a> to the <a href="/wiki/Gamma_function" title="Gamma function">Gamma function</a>, <a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N.L.Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S.Kotz</a><sup id="cite_ref-JKB_1-7" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> derived the following approximation for values of the shape parameters greater than unity (the relative error for this approximation is only 3.5% for <i>α</i> = <i>β</i> = 1, and it decreases to zero as <i>α</i> → ∞, <i>β</i> → ∞):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\text{mean abs. dev. from mean}}{\text{standard deviation}}}&amp;={\frac {\operatorname {E} [|X-E[X]|]}{\sqrt {\operatorname {var} (X)}}}\\&amp;\approx {\sqrt {\frac {2}{\pi }}}\left(1+{\frac {7}{12(\alpha +\beta )}}{}-{\frac {1}{12\alpha }}-{\frac {1}{12\beta }}\right),{\text{ if }}\alpha ,\beta &gt;1.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mtext>mean abs. dev. from mean</mtext>
<mtext>standard deviation</mtext>
</mfrac>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mrow>
<msqrt>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mn>2</mn>
<mi>&#x03C0;<!-- π --></mi>
</mfrac>
</msqrt>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>7</mn>
<mrow>
<mn>12</mn>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>12</mn>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>12</mn>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1.</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\text{mean abs. dev. from mean}}{\text{standard deviation}}}&amp;={\frac {\operatorname {E} [|X-E[X]|]}{\sqrt {\operatorname {var} (X)}}}\\&amp;\approx {\sqrt {\frac {2}{\pi }}}\left(1+{\frac {7}{12(\alpha +\beta )}}{}-{\frac {1}{12\alpha }}-{\frac {1}{12\beta }}\right),{\text{ if }}\alpha ,\beta &gt;1.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c196a5a2eb110b71471a3dc019241c6cb8c3f927" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:81.253ex; height:13.843ex;" alt=" \begin{align}&#10;\frac{\text{mean abs. dev. from mean}}{\text{standard deviation}} &amp;=\frac{\operatorname{E}[|X - E[X]|]}{\sqrt{\operatorname{var}(X)}}\\&#10;&amp;\approx \sqrt{\frac{2}{\pi}} \left(1+\frac{7}{12 (\alpha+\beta)}{}-\frac{1}{12 \alpha}-\frac{1}{12 \beta} \right), \text{ if } \alpha, \beta &gt; 1.&#10;\end{align}"></span></dd></dl>
<p>At the limit α → ∞, β → ∞, the ratio of the mean absolute deviation to the standard deviation (for the beta distribution) becomes equal to the ratio of the same measures for the normal distribution: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mn>2</mn>
<mi>&#x03C0;<!-- π --></mi>
</mfrac>
</msqrt>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {2}{\pi }}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14c49a2b1362a06b132b9477b3669977ad5633dd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:4.492ex; height:6.176ex;" alt="{\sqrt {\frac {2}{\pi }}}"></span>. For α = β = 1 this ratio equals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {3}}{2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msqrt>
<mn>3</mn>
</msqrt>
<mn>2</mn>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {3}}{2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4864a0c173339d1d88e89ca3c943f016744c879a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:3.934ex; height:5.843ex;" alt="{\frac {\sqrt {3}}{2}}"></span>, so that from α = β = 1 to α, β → ∞ the ratio decreases by 8.5%. For α = β = 0 the standard deviation is exactly equal to the mean absolute deviation around the mean. Therefore, this ratio decreases by 15% from α = β = 0 to α = β = 1, and by 25% from α = β = 0 to α, β → ∞ . However, for skewed beta distributions such that α → 0 or β → 0, the ratio of the standard deviation to the mean absolute deviation approaches infinity (although each of them, individually, approaches zero) because the mean absolute deviation approaches zero faster than the standard deviation.
</p><p>Using the <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a> in terms of mean μ and sample size ν = α + β &gt; 0:
</p>
<dl><dd>α = μν, β = (1μ)ν</dd></dl>
<p>one can express the mean <a href="/wiki/Absolute_deviation" class="mw-redirect" title="Absolute deviation">absolute deviation</a> around the mean in terms of the mean μ and the sample size ν as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [|X-E[X]|]={\frac {2\mu ^{\mu \nu }(1-\mu )^{(1-\mu )\nu }}{\nu \mathrm {B} (\mu \nu ,(1-\mu )\nu )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<msup>
<mi>&#x03BC;<!-- μ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</msup>
</mrow>
<mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [|X-E[X]|]={\frac {2\mu ^{\mu \nu }(1-\mu )^{(1-\mu )\nu }}{\nu \mathrm {B} (\mu \nu ,(1-\mu )\nu )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/027efecf8aaefea8c805194e47a1374ffcb63cb8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.322ex; height:6.843ex;" alt="\operatorname{E}[| X - E[X]|] = \frac{2 \mu^{\mu\nu} (1-\mu)^{(1-\mu)\nu}}{\nu \Beta(\mu \nu,(1-\mu)\nu)}"></span></dd></dl>
<p>For a symmetric distribution, the mean is at the middle of the distribution, μ = 1/2, and therefore:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [|X-E[X]|]={\frac {2^{1-\nu }}{\nu \mathrm {B} ({\tfrac {\nu }{2}},{\tfrac {\nu }{2}})}}&amp;={\frac {2^{1-\nu }\Gamma (\nu )}{\nu (\Gamma ({\tfrac {\nu }{2}}))^{2}}}\\\lim _{\nu \to 0}\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;={\tfrac {1}{2}}\\\lim _{\nu \to \infty }\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;=0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</msup>
<mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03BD;<!-- ν --></mi>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03BD;<!-- ν --></mi>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</msup>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03BD;<!-- ν --></mi>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow>
<mo>(</mo>
<mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [|X-E[X]|]={\frac {2^{1-\nu }}{\nu \mathrm {B} ({\tfrac {\nu }{2}},{\tfrac {\nu }{2}})}}&amp;={\frac {2^{1-\nu }\Gamma (\nu )}{\nu (\Gamma ({\tfrac {\nu }{2}}))^{2}}}\\\lim _{\nu \to 0}\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;={\tfrac {1}{2}}\\\lim _{\nu \to \infty }\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;=0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87aa0eff7a4da0f5abe2d211e2b7dda8c8fff801" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -11.505ex; width:40.927ex; height:24.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [|X-E[X]|]={\frac {2^{1-\nu }}{\nu \mathrm {B} ({\tfrac {\nu }{2}},{\tfrac {\nu }{2}})}}&amp;={\frac {2^{1-\nu }\Gamma (\nu )}{\nu (\Gamma ({\tfrac {\nu }{2}}))^{2}}}\\\lim _{\nu \to 0}\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;={\tfrac {1}{2}}\\\lim _{\nu \to \infty }\left(\lim _{\mu \to {\frac {1}{2}}}\operatorname {E} [|X-E[X]|]\right)&amp;=0\end{aligned}}}"></span></dd></dl>
<p>Also, the following limits (with only the noted variable approaching the limit) can be obtained from the above expressions:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to 0}\operatorname {E} [|X-E[X]|]=0\\\lim _{\beta \to \infty }\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to \infty }\operatorname {E} [|X-E[X]|]=0\\\lim _{\mu \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\mu \to 1}\operatorname {E} [|X-E[X]|]=0\\\lim _{\nu \to 0}\operatorname {E} [|X-E[X]|]&amp;={\sqrt {\mu (1-\mu )}}\\\lim _{\nu \to \infty }\operatorname {E} [|X-E[X]|]&amp;=0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\beta \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to 0}\operatorname {E} [|X-E[X]|]=0\\\lim _{\beta \to \infty }\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to \infty }\operatorname {E} [|X-E[X]|]=0\\\lim _{\mu \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\mu \to 1}\operatorname {E} [|X-E[X]|]=0\\\lim _{\nu \to 0}\operatorname {E} [|X-E[X]|]&amp;={\sqrt {\mu (1-\mu )}}\\\lim _{\nu \to \infty }\operatorname {E} [|X-E[X]|]&amp;=0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87c43b4a05f8ea3acf3f15b0a16f6ee07811ac6b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:45.531ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}\lim _{\beta \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to 0}\operatorname {E} [|X-E[X]|]=0\\\lim _{\beta \to \infty }\operatorname {E} [|X-E[X]|]&amp;=\lim _{\alpha \to \infty }\operatorname {E} [|X-E[X]|]=0\\\lim _{\mu \to 0}\operatorname {E} [|X-E[X]|]&amp;=\lim _{\mu \to 1}\operatorname {E} [|X-E[X]|]=0\\\lim _{\nu \to 0}\operatorname {E} [|X-E[X]|]&amp;={\sqrt {\mu (1-\mu )}}\\\lim _{\nu \to \infty }\operatorname {E} [|X-E[X]|]&amp;=0\end{aligned}}}"></span></dd></dl>
<h4><span class="mw-headline" id="Mean_absolute_difference">Mean absolute difference</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=21" title="Edit section: Mean absolute difference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>The <a href="/wiki/Mean_absolute_difference" title="Mean absolute difference">mean absolute difference</a> for the Beta distribution is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {MD} =\int _{0}^{1}\int _{0}^{1}f(x;\alpha ,\beta )\,f(y;\alpha ,\beta )\,|x-y|\,dx\,dy=\left({\frac {4}{\alpha +\beta }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">M</mi>
<mi mathvariant="normal">D</mi>
</mrow>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>y</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>4</mn>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {MD} =\int _{0}^{1}\int _{0}^{1}f(x;\alpha ,\beta )\,f(y;\alpha ,\beta )\,|x-y|\,dx\,dy=\left({\frac {4}{\alpha +\beta }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a3f1b575dbf4e8aa6c180af85acb99a85077f82" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.503ex; height:6.509ex;" alt="{\displaystyle \mathrm {MD} =\int _{0}^{1}\int _{0}^{1}f(x;\alpha ,\beta )\,f(y;\alpha ,\beta )\,|x-y|\,dx\,dy=\left({\frac {4}{\alpha +\beta }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}"></span></dd></dl>
<p>The <a href="/wiki/Gini_coefficient" title="Gini coefficient">Gini coefficient</a> for the Beta distribution is half of the relative mean absolute difference:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {G} =\left({\frac {2}{\alpha }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {G} =\left({\frac {2}{\alpha }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b4dc9f001aea3434b57f12eaaabd341347cc169" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.818ex; height:6.509ex;" alt="{\displaystyle \mathrm {G} =\left({\frac {2}{\alpha }}\right){\frac {B(\alpha +\beta ,\alpha +\beta )}{B(\alpha ,\alpha )B(\beta ,\beta )}}}"></span></dd></dl>
<h3><span class="mw-headline" id="Skewness">Skewness</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=22" title="Edit section: Skewness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg/325px-Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg" decoding="async" width="325" height="150" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg/488px-Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg/650px-Skewness_for_Beta_Distribution_as_a_function_of_the_variance_and_the_mean_-_J._Rodal.jpg 2x" data-file-width="1456" data-file-height="671" /></a><figcaption>Skewness for Beta Distribution as a function of variance and mean</figcaption></figure>
<p>The <a href="/wiki/Skewness" title="Skewness">skewness</a> (the third moment centered on the mean, normalized by the 3/2 power of the variance) of the beta distribution is<sup id="cite_ref-JKB_1-8" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
</msqrt>
</mrow>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(\beta -\alpha ){\sqrt {\alpha +\beta +1}}}{(\alpha +\beta +2){\sqrt {\alpha \beta }}}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2334c6fa1e6326760870b716521460bba115a92" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:43.355ex; height:7.509ex;" alt="\gamma_1 =\frac{\operatorname{E}[(X - \mu)^3]}{(\operatorname{var}(X))^{3/2}} = \frac{2(\beta - \alpha)\sqrt{\alpha + \beta + 1}}{(\alpha + \beta + 2) \sqrt{\alpha \beta}} ."></span></dd></dl>
<p>Letting α = β in the above expression one obtains γ<sub>1</sub> = 0, showing once again that for α = β the distribution is symmetric and hence the skewness is zero. Positive skew (right-tailed) for α &lt; β, negative skew (left-tailed) for α &gt; β.
</p><p>Using the <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a> in terms of mean μ and sample size ν = α + β:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;{}=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;{}=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0.</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;{}=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;{}=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9235083c23a44820d57502412277b6492733df3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.633ex; height:6.176ex;" alt=" \begin{align}&#10; \alpha &amp; {} = \mu \nu ,\text{ where }\nu =(\alpha + \beta) &gt;0\\&#10; \beta &amp; {} = (1 - \mu) \nu , \text{ where }\nu =(\alpha + \beta) &gt;0.&#10;\end{align}"></span></dd></dl>
<p>one can express the skewness in terms of the mean μ and the sample size ν as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(1-2\mu ){\sqrt {1+\nu }}}{(2+\nu ){\sqrt {\mu (1-\mu )}}}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</msqrt>
</mrow>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(1-2\mu ){\sqrt {1+\nu }}}{(2+\nu ){\sqrt {\mu (1-\mu )}}}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d71042628a42bfedc972e01f8ba5c27f63c3fae4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:40.72ex; height:7.176ex;" alt="\gamma_1 =\frac{\operatorname{E}[(X - \mu)^3]}{(\operatorname{var}(X))^{3/2}} = \frac{2(1-2\mu)\sqrt{1+\nu}}{(2+\nu)\sqrt{\mu (1 - \mu)}}."></span></dd></dl>
<p>The skewness can also be expressed just in terms of the variance <i>var</i> and the mean μ as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(1-2\mu ){\sqrt {\text{ var }}}}{\mu (1-\mu )+\operatorname {var} }}{\text{ if }}\operatorname {var} &lt;\mu (1-\mu )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mtext>&#xA0;var&#xA0;</mtext>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>var</mi>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>var</mi>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \gamma _{1}={\frac {\operatorname {E} [(X-\mu )^{3}]}{(\operatorname {var} (X))^{3/2}}}={\frac {2(1-2\mu ){\sqrt {\text{ var }}}}{\mu (1-\mu )+\operatorname {var} }}{\text{ if }}\operatorname {var} &lt;\mu (1-\mu )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e30c818c1af07028336494d35562333ffd903f1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:55.95ex; height:6.843ex;" alt="\gamma_1 =\frac{\operatorname{E}[(X - \mu)^3]}{(\operatorname{var}(X))^{3/2}} = \frac{2(1-2\mu)\sqrt{\text{ var }}}{ \mu(1-\mu) + \operatorname{var}}\text{ if } \operatorname{var} &lt; \mu(1-\mu)"></span></dd></dl>
<p>The accompanying plot of skewness as a function of variance and mean shows that maximum variance (1/4) is coupled with zero skewness and the symmetry condition (μ = 1/2), and that maximum skewness (positive or negative infinity) occurs when the mean is located at one end or the other, so that the "mass" of the probability distribution is concentrated at the ends (minimum variance).
</p><p>The following expression for the square of the skewness, in terms of the sample size ν = α + β and the variance <i>var</i>, is useful for the method of moments estimation of four parameters:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\gamma _{1})^{2}={\frac {(\operatorname {E} [(X-\mu )^{3}])^{2}}{(\operatorname {var} (X))^{3}}}={\frac {4}{(2+\nu )^{2}}}{\bigg (}{\frac {1}{\text{var}}}-4(1+\nu ){\bigg )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>4</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mtext>var</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle (\gamma _{1})^{2}={\frac {(\operatorname {E} [(X-\mu )^{3}])^{2}}{(\operatorname {var} (X))^{3}}}={\frac {4}{(2+\nu )^{2}}}{\bigg (}{\frac {1}{\text{var}}}-4(1+\nu ){\bigg )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d9343b5e45ab6ac483a8f0fb8efd1699e0158d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:54.521ex; height:6.676ex;" alt="(\gamma_1)^2 =\frac{(\operatorname{E}[(X - \mu)^3])^2}{(\operatorname{var}(X))^3} = \frac{4}{(2+\nu)^2}\bigg(\frac{1}{\text{var}}-4(1+\nu)\bigg)"></span></dd></dl>
<p>This expression correctly gives a skewness of zero for α = β, since in that case (see <a href="#Variance">§&#160;Variance</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} ={\frac {1}{4(1+\nu )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} ={\frac {1}{4(1+\nu )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceee4bc548c8256d3770abfd91ced35cdaeb4305" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.443ex; height:6.009ex;" alt="\operatorname{var} = \frac{1}{4 (1 + \nu)}"></span>.
</p><p>For the symmetric case (α = β), skewness = 0 over the whole range, and the following limits apply:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\alpha =\beta \to 0}\gamma _{1}=\lim _{\alpha =\beta \to \infty }\gamma _{1}=\lim _{\nu \to 0}\gamma _{1}=\lim _{\nu \to \infty }\gamma _{1}=\lim _{\mu \to {\frac {1}{2}}}\gamma _{1}=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{\alpha =\beta \to 0}\gamma _{1}=\lim _{\alpha =\beta \to \infty }\gamma _{1}=\lim _{\nu \to 0}\gamma _{1}=\lim _{\nu \to \infty }\gamma _{1}=\lim _{\mu \to {\frac {1}{2}}}\gamma _{1}=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62067392844dd260a0af419672fd2f6e8c964ea8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:53.81ex; height:5.343ex;" alt="\lim_{\alpha = \beta \to 0} \gamma_1 = \lim_{\alpha = \beta \to \infty} \gamma_1 =\lim_{\nu \to 0} \gamma_1=\lim_{\nu \to \infty} \gamma_1=\lim_{\mu \to \frac{1}{2}} \gamma_1 = 0"></span></dd></dl>
<p>For the asymmetric cases (α ≠ β) the following limits (with only the noted variable approaching the limit) can be obtained from the above expressions:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\gamma _{1}=\lim _{\mu \to 0}\gamma _{1}=\infty \\&amp;\lim _{\beta \to 0}\gamma _{1}=\lim _{\mu \to 1}\gamma _{1}=-\infty \\&amp;\lim _{\alpha \to \infty }\gamma _{1}=-{\frac {2}{\sqrt {\beta }}},\quad \lim _{\beta \to 0}(\lim _{\alpha \to \infty }\gamma _{1})=-\infty ,\quad \lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\gamma _{1})=0\\&amp;\lim _{\beta \to \infty }\gamma _{1}={\frac {2}{\sqrt {\alpha }}},\quad \lim _{\alpha \to 0}(\lim _{\beta \to \infty }\gamma _{1})=\infty ,\quad \lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\gamma _{1})=0\\&amp;\lim _{\nu \to 0}\gamma _{1}={\frac {1-2\mu }{\sqrt {\mu (1-\mu )}}},\quad \lim _{\mu \to 0}(\lim _{\nu \to 0}\gamma _{1})=\infty ,\quad \lim _{\mu \to 1}(\lim _{\nu \to 0}\gamma _{1})=-\infty \end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>2</mn>
<msqrt>
<mi>&#x03B2;<!-- β --></mi>
</msqrt>
</mfrac>
</mrow>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>2</mn>
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
</msqrt>
</mfrac>
</mrow>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mi>&#x03BC;<!-- μ --></mi>
</mrow>
<msqrt>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mspace width="1em" />
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<msub>
<mi>&#x03B3;<!-- γ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\gamma _{1}=\lim _{\mu \to 0}\gamma _{1}=\infty \\&amp;\lim _{\beta \to 0}\gamma _{1}=\lim _{\mu \to 1}\gamma _{1}=-\infty \\&amp;\lim _{\alpha \to \infty }\gamma _{1}=-{\frac {2}{\sqrt {\beta }}},\quad \lim _{\beta \to 0}(\lim _{\alpha \to \infty }\gamma _{1})=-\infty ,\quad \lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\gamma _{1})=0\\&amp;\lim _{\beta \to \infty }\gamma _{1}={\frac {2}{\sqrt {\alpha }}},\quad \lim _{\alpha \to 0}(\lim _{\beta \to \infty }\gamma _{1})=\infty ,\quad \lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\gamma _{1})=0\\&amp;\lim _{\nu \to 0}\gamma _{1}={\frac {1-2\mu }{\sqrt {\mu (1-\mu )}}},\quad \lim _{\mu \to 0}(\lim _{\nu \to 0}\gamma _{1})=\infty ,\quad \lim _{\mu \to 1}(\lim _{\nu \to 0}\gamma _{1})=-\infty \end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bba90eaf084c6a3d43b4c92915911f61b0b7a77" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -14.005ex; width:63.855ex; height:29.176ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}\gamma _{1}=\lim _{\mu \to 0}\gamma _{1}=\infty \\&amp;\lim _{\beta \to 0}\gamma _{1}=\lim _{\mu \to 1}\gamma _{1}=-\infty \\&amp;\lim _{\alpha \to \infty }\gamma _{1}=-{\frac {2}{\sqrt {\beta }}},\quad \lim _{\beta \to 0}(\lim _{\alpha \to \infty }\gamma _{1})=-\infty ,\quad \lim _{\beta \to \infty }(\lim _{\alpha \to \infty }\gamma _{1})=0\\&amp;\lim _{\beta \to \infty }\gamma _{1}={\frac {2}{\sqrt {\alpha }}},\quad \lim _{\alpha \to 0}(\lim _{\beta \to \infty }\gamma _{1})=\infty ,\quad \lim _{\alpha \to \infty }(\lim _{\beta \to \infty }\gamma _{1})=0\\&amp;\lim _{\nu \to 0}\gamma _{1}={\frac {1-2\mu }{\sqrt {\mu (1-\mu )}}},\quad \lim _{\mu \to 0}(\lim _{\nu \to 0}\gamma _{1})=\infty ,\quad \lim _{\mu \to 1}(\lim _{\nu \to 0}\gamma _{1})=-\infty \end{aligned}}}"></span></dd></dl>
<p><span typeof="mw:File"><a href="/wiki/File:Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/43/Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/43/Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/650px-Skewness_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="733" data-file-height="415" /></a></span><span typeof="mw:File"><a href="/wiki/File:Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg/325px-Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="184" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg/488px-Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg/650px-Skewness_Beta_Distribution_for_alpha_and_beta_from_.1_to_5_-_J._Rodal.jpg 2x" data-file-width="733" data-file-height="415" /></a></span>
</p>
<h3><span class="mw-headline" id="Kurtosis">Kurtosis</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=23" title="Edit section: Kurtosis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg/325px-Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg" decoding="async" width="325" height="149" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/69/Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg/488px-Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/69/Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg/650px-Excess_Kurtosis_for_Beta_Distribution_as_a_function_of_variance_and_mean_-_J._Rodal.jpg 2x" data-file-width="1564" data-file-height="716" /></a><figcaption>Excess Kurtosis for Beta Distribution as a function of variance and mean</figcaption></figure>
<p>The beta distribution has been applied in acoustic analysis to assess damage to gears, as the kurtosis of the beta distribution has been reported to be a good indicator of the condition of a gear.<sup id="cite_ref-Oguamanam_14-0" class="reference"><a href="#cite_note-Oguamanam-14">&#91;14&#93;</a></sup> Kurtosis has also been used to distinguish the seismic signal generated by a person's footsteps from other signals. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, one can separate different targets based on the seismic waves they generate. Kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by human footsteps than other signals generated by vehicles, winds, noise, etc.<sup id="cite_ref-Liang_15-0" class="reference"><a href="#cite_note-Liang-15">&#91;15&#93;</a></sup> Unfortunately, the notation for kurtosis has not been standardized. Kenney and Keeping<sup id="cite_ref-Kenney_and_Keeping_16-0" class="reference"><a href="#cite_note-Kenney_and_Keeping-16">&#91;16&#93;</a></sup> use the symbol γ<sub>2</sub> for the <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a>, but <a href="/wiki/Abramowitz_and_Stegun" title="Abramowitz and Stegun">Abramowitz and Stegun</a><sup id="cite_ref-Abramowitz_17-0" class="reference"><a href="#cite_note-Abramowitz-17">&#91;17&#93;</a></sup> use different terminology. To prevent confusion<sup id="cite_ref-Weisstein.Kurtosi_18-0" class="reference"><a href="#cite_note-Weisstein.Kurtosi-18">&#91;18&#93;</a></sup> between kurtosis (the fourth moment centered on the mean, normalized by the square of the variance) and excess kurtosis, when using symbols, they will be spelled out as follows:<sup id="cite_ref-Handbook_of_Beta_Distribution_8-3" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup><sup id="cite_ref-Panik_19-0" class="reference"><a href="#cite_note-Panik-19">&#91;19&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{excess kurtosis}}&amp;={\text{kurtosis}}-3\\&amp;={\frac {\operatorname {E} [(X-\mu )^{4}]}{(\operatorname {var} (X))^{2}}}-3\\&amp;={\frac {6[\alpha ^{3}-\alpha ^{2}(2\beta -1)+\beta ^{2}(\beta +1)-2\alpha \beta (\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}\\&amp;={\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>kurtosis</mtext>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>4</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>6</mn>
<mo stretchy="false">[</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>6</mn>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\text{excess kurtosis}}&amp;={\text{kurtosis}}-3\\&amp;={\frac {\operatorname {E} [(X-\mu )^{4}]}{(\operatorname {var} (X))^{2}}}-3\\&amp;={\frac {6[\alpha ^{3}-\alpha ^{2}(2\beta -1)+\beta ^{2}(\beta +1)-2\alpha \beta (\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}\\&amp;={\frac {6[(\alpha -\beta )^{2}(\alpha +\beta +1)-\alpha \beta (\alpha +\beta +2)]}{\alpha \beta (\alpha +\beta +2)(\alpha +\beta +3)}}.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed8320d4f38ba9260f8ad91c30238abc08306dc8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -11.005ex; width:64.431ex; height:23.176ex;" alt="\begin{align}&#10;\text{excess kurtosis}&#10; &amp;=\text{kurtosis} - 3\\&#10; &amp;=\frac{\operatorname{E}[(X - \mu)^4]}{{(\operatorname{var}(X))^{2}}}-3\\&#10; &amp;=\frac{6[\alpha^3-\alpha^2(2\beta - 1) + \beta^2(\beta + 1) - 2\alpha\beta(\beta + 2)]}{\alpha \beta (\alpha + \beta + 2)(\alpha + \beta + 3)}\\&#10; &amp;=\frac{6[(\alpha - \beta)^2 (\alpha +\beta + 1) - \alpha \beta (\alpha + \beta + 2)]}&#10;{\alpha \beta (\alpha + \beta + 2) (\alpha + \beta + 3)} .&#10;\end{align}"></span></dd></dl>
<p>Letting α = β in the above expression one obtains
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}=-{\frac {6}{3+2\alpha }}{\text{ if }}\alpha =\beta }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}=-{\frac {6}{3+2\alpha }}{\text{ if }}\alpha =\beta }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff9bfb2af024b85f783049bd3c2e5d51898c03eb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:35.55ex; height:5.343ex;" alt="\text{excess kurtosis} =- \frac{6}{3+2\alpha} \text{ if }\alpha=\beta "></span>.</dd></dl>
<p>Therefore, for symmetric beta distributions, the excess kurtosis is negative, increasing from a minimum value of 2 at the limit as {α = β} → 0, and approaching a maximum value of zero as {α = β} → ∞. The value of 2 is the minimum value of excess kurtosis that any distribution (not just beta distributions, but any distribution of any possible kind) can ever achieve. This minimum value is reached when all the probability density is entirely concentrated at each end <i>x</i> = 0 and <i>x</i> = 1, with nothing in between: a 2-point <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> with equal probability 1/2 at each end (a coin toss: see section below "Kurtosis bounded by the square of the skewness" for further discussion). The description of <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> as a measure of the "potential outliers" (or "potential rare, extreme values") of the probability distribution, is correct for all distributions including the beta distribution. When rare, extreme values can occur in the beta distribution, the higher its kurtosis; otherwise, the kurtosis is lower. For α ≠ β, skewed beta distributions, the excess kurtosis can reach unlimited positive values (particularly for α → 0 for finite β, or for β → 0 for finite α) because the side away from the mode will produce occasional extreme values. Minimum kurtosis takes place when the mass density is concentrated equally at each end (and therefore the mean is at the center), and there is no probability mass density in between the ends.
</p><p>Using the <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a> in terms of mean μ and sample size ν = α + β:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;{}=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;{}=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;where&#xA0;</mtext>
</mrow>
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0.</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;{}=\mu \nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0\\\beta &amp;{}=(1-\mu )\nu ,{\text{ where }}\nu =(\alpha +\beta )&gt;0.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9235083c23a44820d57502412277b6492733df3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.633ex; height:6.176ex;" alt=" \begin{align}&#10; \alpha &amp; {} = \mu \nu ,\text{ where }\nu =(\alpha + \beta) &gt;0\\&#10; \beta &amp; {} = (1 - \mu) \nu , \text{ where }\nu =(\alpha + \beta) &gt;0.&#10;\end{align}"></span></dd></dl>
<p>one can express the excess kurtosis in terms of the mean μ and the sample size ν as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}{\bigg (}{\frac {(1-2\mu )^{2}(1+\nu )}{\mu (1-\mu )(2+\nu )}}-1{\bigg )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mi>&#x03BC;<!-- μ --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}{\bigg (}{\frac {(1-2\mu )^{2}(1+\nu )}{\mu (1-\mu )(2+\nu )}}-1{\bigg )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93b68e62d58b197fa50fe15bc12d94b9a4accd9a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:48.62ex; height:6.676ex;" alt="\text{excess kurtosis} =\frac{6}{3 + \nu}\bigg (\frac{(1 - 2 \mu)^2 (1 + \nu)}{\mu (1 - \mu) (2 + \nu)} - 1 \bigg )"></span></dd></dl>
<p>The excess kurtosis can also be expressed in terms of just the following two parameters: the variance <i>var</i>, and the sample size ν as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}={\frac {6}{(3+\nu )(2+\nu )}}\left({\frac {1}{\text{ var }}}-6-5\nu \right){\text{ if }}{\text{ var }}&lt;\mu (1-\mu )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mtext>&#xA0;var&#xA0;</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>6</mn>
<mo>&#x2212;<!-- --></mo>
<mn>5</mn>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;var&#xA0;</mtext>
</mrow>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}={\frac {6}{(3+\nu )(2+\nu )}}\left({\frac {1}{\text{ var }}}-6-5\nu \right){\text{ if }}{\text{ var }}&lt;\mu (1-\mu )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c82b03c2535bdd1e366da0c3d7ed4c043abbda6d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:70.168ex; height:6.343ex;" alt="\text{excess kurtosis} =\frac{6}{(3 + \nu)(2 + \nu)}\left(\frac{1}{\text{ var }} - 6 - 5 \nu \right)\text{ if }\text{ var }&lt; \mu(1-\mu)"></span></dd></dl>
<p>and, in terms of the variance <i>var</i> and the mean μ as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}={\frac {6{\text{ var }}(1-{\text{ var }}-5\mu (1-\mu ))}{({\text{var }}+\mu (1-\mu ))(2{\text{ var }}+\mu (1-\mu ))}}{\text{ if }}{\text{ var }}&lt;\mu (1-\mu )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>6</mn>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;var&#xA0;</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;var&#xA0;</mtext>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>5</mn>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>var&#xA0;</mtext>
</mrow>
<mo>+</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;var&#xA0;</mtext>
</mrow>
<mo>+</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;var&#xA0;</mtext>
</mrow>
<mo>&lt;</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}={\frac {6{\text{ var }}(1-{\text{ var }}-5\mu (1-\mu ))}{({\text{var }}+\mu (1-\mu ))(2{\text{ var }}+\mu (1-\mu ))}}{\text{ if }}{\text{ var }}&lt;\mu (1-\mu )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/384d7c48e747adadc7b2dda58a91509b3cf6dd35" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:73.385ex; height:6.509ex;" alt="\text{excess kurtosis} =\frac{6 \text{ var } (1 - \text{ var } - 5 \mu (1 - \mu) )}{(\text{var } + \mu (1 - \mu))(2\text{ var } + \mu (1 - \mu) )}\text{ if }\text{ var }&lt; \mu(1-\mu)"></span></dd></dl>
<p>The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2). This occurs for the symmetric case of α = β = 0, with zero skewness. At the limit, this is the 2 point <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> with equal probability 1/2 at each <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> end <i>x</i> = 0 and <i>x</i> = 1 and zero probability everywhere else. (A coin toss: one face of the coin being <i>x</i> = 0 and the other face being <i>x</i> = 1.) Variance is maximum because the distribution is bimodal with nothing in between the two modes (spikes) at each end. Excess kurtosis is minimum: the probability density "mass" is zero at the mean and it is concentrated at the two peaks at each end. Excess kurtosis reaches the minimum possible value (for any distribution) when the probability density function has two spikes at each end: it is bi-"peaky" with nothing in between them.
</p><p>On the other hand, the plot shows that for extreme skewed cases, where the mean is located near one or the other end (μ = 0 or μ = 1), the variance is close to zero, and the excess kurtosis rapidly approaches infinity when the mean of the distribution approaches either end.
</p><p>Alternatively, the excess kurtosis can also be expressed in terms of just the following two parameters: the square of the skewness, and the sample size ν as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}{\bigg (}{\frac {(2+\nu )}{4}}({\text{skewness}})^{2}-1{\bigg )}{\text{ if (skewness)}}^{2}-2&lt;{\text{excess kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
<msup>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if (skewness)</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}{\bigg (}{\frac {(2+\nu )}{4}}({\text{skewness}})^{2}-1{\bigg )}{\text{ if (skewness)}}^{2}-2&lt;{\text{excess kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4a2a00762216460d3146b5e185c584ca7894da" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:104.25ex; height:6.343ex;" alt="\text{excess kurtosis} =\frac{6}{3 + \nu}\bigg(\frac{(2 + \nu)}{4} (\text{skewness})^2 - 1\bigg)\text{ if (skewness)}^2-2&lt; \text{excess kurtosis}&lt; \frac{3}{2} (\text{skewness})^2"></span></dd></dl>
<p>From this last expression, one can obtain the same limits published over a century ago by <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a><sup id="cite_ref-Pearson_20-0" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup> for the beta distribution (see section below titled "Kurtosis bounded by the square of the skewness"). Setting α + β= ν = 0 in the above expression, one obtains Pearson's lower boundary (values for the skewness and excess kurtosis below the boundary (excess kurtosis + 2 skewness<sup>2</sup> = 0) cannot occur for any distribution, and hence <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> appropriately called the region below this boundary the "impossible region"). The limit of α + β = ν → ∞ determines Pearson's upper boundary.
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=({\text{skewness}})^{2}-2\\&amp;\lim _{\nu \to \infty }{\text{excess kurtosis}}={\tfrac {3}{2}}({\text{skewness}})^{2}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=({\text{skewness}})^{2}-2\\&amp;\lim _{\nu \to \infty }{\text{excess kurtosis}}={\tfrac {3}{2}}({\text{skewness}})^{2}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c1b3a5082942b2039499009068f1640b3cb8507" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.578ex; margin-bottom: -0.26ex; width:38.554ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=({\text{skewness}})^{2}-2\\&amp;\lim _{\nu \to \infty }{\text{excess kurtosis}}={\tfrac {3}{2}}({\text{skewness}})^{2}\end{aligned}}}"></span></dd></dl>
<p>therefore:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{skewness}})^{2}-2&lt;{\text{excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{skewness}})^{2}-2&lt;{\text{excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cfacc2713aca2945a2a4d65e4a41d7ce3486ec4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:50.324ex; height:3.509ex;" alt="(\text{skewness})^2-2&lt; \text{excess kurtosis}&lt; \tfrac{3}{2} (\text{skewness})^2"></span></dd></dl>
<p>Values of ν = α + β such that ν ranges from zero to infinity, 0 &lt; ν &lt; ∞, span the whole region of the beta distribution in the plane of excess kurtosis versus squared skewness.
</p><p>For the symmetric case (α = β), the following limits apply:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}{\text{excess kurtosis}}=-2\\&amp;\lim _{\alpha =\beta \to \infty }{\text{excess kurtosis}}=0\\&amp;\lim _{\mu \to {\frac {1}{2}}}{\text{excess kurtosis}}=-{\frac {6}{3+\nu }}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha =\beta \to 0}{\text{excess kurtosis}}=-2\\&amp;\lim _{\alpha =\beta \to \infty }{\text{excess kurtosis}}=0\\&amp;\lim _{\mu \to {\frac {1}{2}}}{\text{excess kurtosis}}=-{\frac {6}{3+\nu }}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faf6d13398e34d7d3fab238a94b36633d89460b0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:31.357ex; height:16.176ex;" alt=" \begin{align}&#10;&amp;\lim_{\alpha = \beta \to 0} \text{excess kurtosis} = - 2 \\&#10;&amp;\lim_{\alpha = \beta \to \infty} \text{excess kurtosis} = 0 \\&#10;&amp;\lim_{\mu \to \frac{1}{2}} \text{excess kurtosis} = - \frac{6}{3 + \nu}&#10;\end{align}"></span></dd></dl>
<p>For the unsymmetric cases (α ≠ β) the following limits (with only the noted variable approaching the limit) can be obtained from the above expressions:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}{\text{excess kurtosis}}=\lim _{\beta \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 1}{\text{excess kurtosis}}=\infty \\&amp;\lim _{\alpha \to \infty }{\text{excess kurtosis}}={\frac {6}{\beta }},{\text{ }}\lim _{\beta \to 0}(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\beta \to \infty }{\text{excess kurtosis}}={\frac {6}{\alpha }},{\text{ }}\lim _{\alpha \to 0}(\lim _{\beta \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=-6+{\frac {1}{\mu (1-\mu )}},{\text{ }}\lim _{\mu \to 0}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\mu \to 1}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty \end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mi>&#x03B2;<!-- β --></mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mn>6</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;</mtext>
</mrow>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>1</mn>
</mrow>
</munder>
<mo stretchy="false">(</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}{\text{excess kurtosis}}=\lim _{\beta \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 1}{\text{excess kurtosis}}=\infty \\&amp;\lim _{\alpha \to \infty }{\text{excess kurtosis}}={\frac {6}{\beta }},{\text{ }}\lim _{\beta \to 0}(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\beta \to \infty }{\text{excess kurtosis}}={\frac {6}{\alpha }},{\text{ }}\lim _{\alpha \to 0}(\lim _{\beta \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=-6+{\frac {1}{\mu (1-\mu )}},{\text{ }}\lim _{\mu \to 0}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\mu \to 1}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty \end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28a968a269123a07cf9a32ccfe2d75ee09e42460" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -10.671ex; width:100.197ex; height:22.509ex;" alt="{\displaystyle {\begin{aligned}&amp;\lim _{\alpha \to 0}{\text{excess kurtosis}}=\lim _{\beta \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 0}{\text{excess kurtosis}}=\lim _{\mu \to 1}{\text{excess kurtosis}}=\infty \\&amp;\lim _{\alpha \to \infty }{\text{excess kurtosis}}={\frac {6}{\beta }},{\text{ }}\lim _{\beta \to 0}(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\beta \to \infty }(\lim _{\alpha \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\beta \to \infty }{\text{excess kurtosis}}={\frac {6}{\alpha }},{\text{ }}\lim _{\alpha \to 0}(\lim _{\beta \to \infty }{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\alpha \to \infty }(\lim _{\beta \to \infty }{\text{excess kurtosis}})=0\\&amp;\lim _{\nu \to 0}{\text{excess kurtosis}}=-6+{\frac {1}{\mu (1-\mu )}},{\text{ }}\lim _{\mu \to 0}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty ,{\text{ }}\lim _{\mu \to 1}(\lim _{\nu \to 0}{\text{excess kurtosis}})=\infty \end{aligned}}}"></span></dd></dl>
<p><span typeof="mw:File"><a href="/wiki/File:Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg/325px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg/488px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg/650px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="744" data-file-height="553" /></a></span><span typeof="mw:File"><a href="/wiki/File:Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg/325px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="242" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg/488px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg/650px-Excess_Kurtosis_for_Beta_Distribution_with_alpha_and_beta_ranging_from_0.1_to_5_-_J._Rodal.jpg 2x" data-file-width="744" data-file-height="553" /></a></span>
</p>
<h3><span class="mw-headline" id="Characteristic_function">Characteristic function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=24" title="Edit section: Characteristic function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Re(CharacteristicFunction)_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg/325px-Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg" decoding="async" width="325" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg/488px-Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg/650px-Re%28CharacteristicFunction%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Back_-_J._Rodal.jpg 2x" data-file-width="1124" data-file-height="887" /></a><figcaption><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">Re(characteristic function)</a> symmetric case α = β ranging from 25 to 0</figcaption></figure><figure typeof="mw:File/Thumb"><a href="/wiki/File:Re(CharacteristicFunc)_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg/325px-Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg" decoding="async" width="325" height="256" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg/488px-Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg/650px-Re%28CharacteristicFunc%29_Beta_Distr_alpha%3Dbeta_from_0_to_25_Front-_J._Rodal.jpg 2x" data-file-width="1134" data-file-height="894" /></a><figcaption><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">Re(characteristic function)</a> symmetric case α = β ranging from 0 to 25</figcaption></figure><figure typeof="mw:File/Thumb"><a href="/wiki/File:Re(CharacteristFunc)_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg/325px-Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg" decoding="async" width="325" height="255" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg/488px-Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg/650px-Re%28CharacteristFunc%29_Beta_Distr_alpha_from_0_to_25_and_beta%3Dalpha%2B0.5_Back_-_J._Rodal.jpg 2x" data-file-width="1278" data-file-height="1001" /></a><figcaption><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">Re(characteristic function)</a> β = α + 1/2; α ranging from 25 to 0</figcaption></figure><figure typeof="mw:File/Thumb"><a href="/wiki/File:Re(CharacterFunc)_Beta_Distrib._beta_from_0_to_25,_alpha%3Dbeta%2B0.5_Back_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1e/Re%28CharacterFunc%29_Beta_Distrib._beta_from_0_to_25%2C_alpha%3Dbeta%2B0.5_Back_-_J._Rodal.jpg/325px-Re%28CharacterF
<p>The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> is the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of the probability density function. The characteristic function of the beta distribution is <a href="/wiki/Confluent_hypergeometric_function" title="Confluent hypergeometric function">Kummer's confluent hypergeometric function</a> (of the first kind):<sup id="cite_ref-JKB_1-9" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-Abramowitz_17-1" class="reference"><a href="#cite_note-Abramowitz-17">&#91;17&#93;</a></sup><sup id="cite_ref-Zwillinger_2014_21-0" class="reference"><a href="#cite_note-Zwillinger_2014-21">&#91;21&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\varphi _{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{itX}\right]\\&amp;=\int _{0}^{1}e^{itx}f(x;\alpha ,\beta )dx\\&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\!\\&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}(it)^{n}}{(\alpha +\beta )^{(n)}n!}}\\&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {(it)^{k}}{k!}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mi>&#x03C6;<!-- φ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mi>t</mi>
<mi>X</mi>
</mrow>
</msup>
<mo>]</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mi>t</mi>
<mi>x</mi>
</mrow>
</msup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mspace width="negativethinmathspace" />
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>i</mi>
<mi>t</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
<mi>n</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munderover>
<mrow>
<mo>(</mo>
<mrow>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>i</mi>
<mi>t</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\varphi _{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{itX}\right]\\&amp;=\int _{0}^{1}e^{itx}f(x;\alpha ,\beta )dx\\&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\!\\&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}(it)^{n}}{(\alpha +\beta )^{(n)}n!}}\\&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {(it)^{k}}{k!}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d709a81766f7f8f900633cdfb4d67c1d1d137d6f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -13.175ex; margin-bottom: -0.33ex; width:45.47ex; height:28.176ex;" alt="{\displaystyle {\begin{aligned}\varphi _{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{itX}\right]\\&amp;=\int _{0}^{1}e^{itx}f(x;\alpha ,\beta )dx\\&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\!\\&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}(it)^{n}}{(\alpha +\beta )^{(n)}n!}}\\&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {(it)^{k}}{k!}}\end{aligned}}}"></span></dd></dl>
<p>where
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
<mo>=</mo>
<mi>x</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>&#x22EF;<!-- ⋯ --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>+</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x^{(n)}=x(x+1)(x+2)\cdots (x+n-1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49d690fa80684dcfb57c90909d9ef750781992fa" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.414ex; height:3.343ex;" alt="x^{(n)}=x(x+1)(x+2)\cdots(x+n-1)"></span></dd></dl>
<p>is the <a href="/wiki/Rising_factorial" class="mw-redirect" title="Rising factorial">rising factorial</a>, also called the "Pochhammer symbol". The value of the characteristic function for <i>t</i> = 0, is one:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{X}(\alpha ;\beta ;0)={}_{1}F_{1}(\alpha ;\alpha +\beta ;0)=1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C6;<!-- φ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \varphi _{X}(\alpha ;\beta ;0)={}_{1}F_{1}(\alpha ;\alpha +\beta ;0)=1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e08898867afc15cc12476c10fb6412d1473eae" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.161ex; height:2.843ex;" alt="{\displaystyle \varphi _{X}(\alpha ;\beta ;0)={}_{1}F_{1}(\alpha ;\alpha +\beta ;0)=1}"></span>.</dd></dl>
<p>Also, the real and imaginary parts of the characteristic function enjoy the following symmetries with respect to the origin of variable <i>t</i>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]={\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Re</mtext>
</mrow>
</mrow>
<mrow>
<mo>[</mo>
<mrow>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Re</mtext>
</mrow>
</mrow>
<mrow>
<mo>[</mo>
<mrow>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x2212;<!-- --></mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]={\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faa05f9f4cdefd2109ef732a8c7e6c84430e48f5" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.294ex; height:2.843ex;" alt="{\displaystyle {\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]={\textrm {Re}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]=-{\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Im</mtext>
</mrow>
</mrow>
<mrow>
<mo>[</mo>
<mrow>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Im</mtext>
</mrow>
</mrow>
<mrow>
<mo>[</mo>
<mrow>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x2212;<!-- --></mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]=-{\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/197280c554f4ede1d62a8bfa3c33a42451019853" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.167ex; height:2.843ex;" alt="{\displaystyle {\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)\right]=-{\textrm {Im}}\left[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)\right]}"></span></dd></dl>
<p>The symmetric case α = β simplifies the characteristic function of the beta distribution to a <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a>, since in the special case α + β = 2α the <a href="/wiki/Confluent_hypergeometric_function" title="Confluent hypergeometric function">confluent hypergeometric function</a> (of the first kind) reduces to a <a href="/wiki/Bessel_function" title="Bessel function">Bessel function</a> (the modified Bessel function of the first kind <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{\alpha -{\frac {1}{2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle I_{\alpha -{\frac {1}{2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93d199b8c1bcbdb8b27bc66ea2a0eb51102aa71e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.089ex; height:4.009ex;" alt="I_{\alpha-\frac 1 2}"></span> ) using <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer's</a> second transformation as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{}_{1}F_{1}(\alpha ;2\alpha ;it)&amp;=e^{\frac {it}{2}}{}_{0}F_{1}\left(;\alpha +{\tfrac {1}{2}};{\frac {(it)^{2}}{16}}\right)\\&amp;=e^{\frac {it}{2}}\left({\frac {it}{4}}\right)^{{\frac {1}{2}}-\alpha }\Gamma \left(\alpha +{\tfrac {1}{2}}\right)I_{\alpha -{\frac {1}{2}}}\left({\frac {it}{2}}\right).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>i</mi>
<mi>t</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>i</mi>
<mi>t</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mn>16</mn>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>i</mi>
<mi>t</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>i</mi>
<mi>t</mi>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msup>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>i</mi>
<mi>t</mi>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{}_{1}F_{1}(\alpha ;2\alpha ;it)&amp;=e^{\frac {it}{2}}{}_{0}F_{1}\left(;\alpha +{\tfrac {1}{2}};{\frac {(it)^{2}}{16}}\right)\\&amp;=e^{\frac {it}{2}}\left({\frac {it}{4}}\right)^{{\frac {1}{2}}-\alpha }\Gamma \left(\alpha +{\tfrac {1}{2}}\right)I_{\alpha -{\frac {1}{2}}}\left({\frac {it}{2}}\right).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6729c240186898dc4200acd85640a1bc43a37f8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:52.923ex; height:14.843ex;" alt="\begin{align} {}_1F_1(\alpha;2\alpha; it) &amp;= e^{\frac{it}{2}} {}_0F_1 \left(; \alpha+\tfrac{1}{2}; \frac{(it)^2}{16} \right) \\&#10;&amp;= e^{\frac{it}{2}} \left(\frac{it}{4}\right)^{\frac{1}{2}-\alpha} \Gamma\left(\alpha+\tfrac{1}{2}\right) I_{\alpha-\frac 1 2}\left(\frac{it}{2}\right).\end{align}"></span></dd></dl>
<p>In the accompanying plots, the <a href="/wiki/Complex_number" title="Complex number">real part</a> (Re) of the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> of the beta distribution is displayed for symmetric (α = β) and skewed (α ≠ β) cases.
</p>
<h3><span class="mw-headline" id="Other_moments">Other moments</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=25" title="Edit section: Other moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Moment_generating_function">Moment generating function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=26" title="Edit section: Moment generating function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>It also follows<sup id="cite_ref-JKB_1-10" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-Handbook_of_Beta_Distribution_8-4" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup> that the <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a> is
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}M_{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{tX}\right]\\[4pt]&amp;=\int _{0}^{1}e^{tx}f(x;\alpha ,\beta )\,dx\\[4pt]&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;t)\\[4pt]&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}}{(\alpha +\beta )^{(n)}}}{\frac {t^{n}}{n!}}\\[4pt]&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mi>M</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>t</mi>
<mi>X</mi>
</mrow>
</msup>
<mo>]</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<msup>
<mi>e</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>t</mi>
<mi>x</mi>
</mrow>
</msup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>t</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
</mrow>
</msup>
<mrow>
<mi>n</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mn>1</mn>
<mo>+</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munderover>
<mrow>
<mo>(</mo>
<mrow>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>t</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}M_{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{tX}\right]\\[4pt]&amp;=\int _{0}^{1}e^{tx}f(x;\alpha ,\beta )\,dx\\[4pt]&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;t)\\[4pt]&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}}{(\alpha +\beta )^{(n)}}}{\frac {t^{n}}{n!}}\\[4pt]&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f2ccc34699ad28c71419340168b2b51c683a93d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -14.924ex; margin-bottom: -0.247ex; width:43.592ex; height:31.509ex;" alt="{\displaystyle {\begin{aligned}M_{X}(\alpha ;\beta ;t)&amp;=\operatorname {E} \left[e^{tX}\right]\\[4pt]&amp;=\int _{0}^{1}e^{tx}f(x;\alpha ,\beta )\,dx\\[4pt]&amp;={}_{1}F_{1}(\alpha ;\alpha +\beta ;t)\\[4pt]&amp;=\sum _{n=0}^{\infty }{\frac {\alpha ^{(n)}}{(\alpha +\beta )^{(n)}}}{\frac {t^{n}}{n!}}\\[4pt]&amp;=1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}\right){\frac {t^{k}}{k!}}\end{aligned}}}"></span></dd></dl>
<p>In particular <i>M</i><sub><i>X</i></sub>(<i>α</i>; <i>β</i>; 0) = 1.
</p>
<h4><span class="mw-headline" id="Higher_moments">Higher moments</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=27" title="Edit section: Higher moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>Using the <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a>, the <i>k</i>-th <a href="/wiki/Raw_moment" class="mw-redirect" title="Raw moment">raw moment</a> is given by<sup id="cite_ref-JKB_1-11" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> the factor
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ebd486800857fa26dc780277828ac6e8549b6dd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.742ex; height:7.343ex;" alt="\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} "></span></dd></dl>
<p>multiplying the (exponential series) term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {t^{k}}{k!}}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>t</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
<mrow>
<mi>k</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \left({\frac {t^{k}}{k!}}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fa171a890daf87017345709927744967da720eb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:6.186ex; height:6.343ex;" alt="\left(\frac{t^k}{k!}\right)"></span> in the series of the <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{k}]={\frac {\alpha ^{(k)}}{(\alpha +\beta )^{(k)}}}=\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>r</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>r</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{k}]={\frac {\alpha ^{(k)}}{(\alpha +\beta )^{(k)}}}=\prod _{r=0}^{k-1}{\frac {\alpha +r}{\alpha +\beta +r}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e03c03f31b903a1bc73ea8b637e3134b110a85a2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.574ex; height:7.343ex;" alt="\operatorname{E}[X^k]= \frac{\alpha^{(k)}}{(\alpha + \beta)^{(k)}} = \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r}"></span></dd></dl>
<p>where (<i>x</i>)<sup>(<i>k</i>)</sup> is a <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">Pochhammer symbol</a> representing rising factorial. It can also be written in a recursive form as
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{k}]={\frac {\alpha +k-1}{\alpha +\beta +k-1}}\operatorname {E} [X^{k-1}].}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>k</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">]</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{k}]={\frac {\alpha +k-1}{\alpha +\beta +k-1}}\operatorname {E} [X^{k-1}].}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/069cb373a905b1e8a5a82a0e3b028e88f63672e2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.708ex; height:5.843ex;" alt="\operatorname{E}[X^k] = \frac{\alpha + k - 1}{\alpha + \beta + k - 1}\operatorname{E}[X^{k - 1}]."></span></dd></dl>
<p>Since the moment generating function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{X}(\alpha ;\beta ;\cdot )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>M</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x22C5;<!-- ⋅ --></mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle M_{X}(\alpha ;\beta ;\cdot )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2da3ca5fb26a0197cfdb61c2bad8a839475aedb4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.23ex; height:2.843ex;" alt="M_X(\alpha; \beta; \cdot)"></span> has a positive radius of convergence, the beta distribution is <a href="/wiki/Moment_problem" title="Moment problem">determined by its moments</a>.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22">&#91;22&#93;</a></sup>
</p>
<h4><span class="mw-headline" id="Moments_of_transformed_random_variables">Moments of transformed random variables</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=28" title="Edit section: Moments of transformed random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<h5><span id="Moments_of_linearly_transformed.2C_product_and_inverted_random_variables"></span><span class="mw-headline" id="Moments_of_linearly_transformed,_product_and_inverted_random_variables">Moments of linearly transformed, product and inverted random variables</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=29" title="Edit section: Moments of linearly transformed, product and inverted random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>One can also show the following expectations for a transformed random variable,<sup id="cite_ref-JKB_1-12" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> where the random variable <i>X</i> is Beta-distributed with parameters α and β: <i>X</i> ~ Beta(α, β). The expected value of the variable 1&#160;&#160;<i>X</i> is the mirror-symmetry of the expected value based on <i>X</i>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {E} [1-X]={\frac {\beta }{\alpha +\beta }}\\&amp;\operatorname {E} [X(1-X)]=\operatorname {E} [(1-X)X]={\frac {\alpha \beta }{(\alpha +\beta )(\alpha +\beta +1)}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {E} [1-X]={\frac {\beta }{\alpha +\beta }}\\&amp;\operatorname {E} [X(1-X)]=\operatorname {E} [(1-X)X]={\frac {\alpha \beta }{(\alpha +\beta )(\alpha +\beta +1)}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dde48c56a3ff737bc5941fb764065845fea3681" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:52.023ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}&amp;\operatorname {E} [1-X]={\frac {\beta }{\alpha +\beta }}\\&amp;\operatorname {E} [X(1-X)]=\operatorname {E} [(1-X)X]={\frac {\alpha \beta }{(\alpha +\beta )(\alpha +\beta +1)}}\end{aligned}}}"></span></dd></dl>
<p>Due to the mirror-symmetry of the probability density function of the beta distribution, the variances based on variables <i>X</i> and 1&#160;&#160;<i>X</i> are identical, and the covariance on <i>X</i>(1&#160;&#160;<i>X</i> is the negative of the variance:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [(1-X)]=\operatorname {var} [X]=-\operatorname {cov} [X,(1-X)]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [(1-X)]=\operatorname {var} [X]=-\operatorname {cov} [X,(1-X)]={\frac {\alpha \beta }{(\alpha +\beta )^{2}(\alpha +\beta +1)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7273cc84a6c789724b985c34059fa75a62bce631" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:66.807ex; height:6.176ex;" alt="\operatorname{var}[(1-X)]=\operatorname{var}[X] = -\operatorname{cov}[X,(1-X)]= \frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}"></span></dd></dl>
<p>These are the expected values for inverted variables, (these are related to the harmonic means, see <a href="#Harmonic_mean">§&#160;Harmonic mean</a>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {E} \left[{\frac {1}{X}}\right]={\frac {\alpha +\beta -1}{\alpha -1}}{\text{ if }}\alpha &gt;1\\&amp;\operatorname {E} \left[{\frac {1}{1-X}}\right]={\frac {\alpha +\beta -1}{\beta -1}}{\text{ if }}\beta &gt;1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {E} \left[{\frac {1}{X}}\right]={\frac {\alpha +\beta -1}{\alpha -1}}{\text{ if }}\alpha &gt;1\\&amp;\operatorname {E} \left[{\frac {1}{1-X}}\right]={\frac {\alpha +\beta -1}{\beta -1}}{\text{ if }}\beta &gt;1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f1f27c9014c9c38a30ae2ceea61a8d7856a275" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:33.319ex; height:12.509ex;" alt="\begin{align}&#10;&amp; \operatorname{E} \left [\frac{1}{X} \right ] = \frac{\alpha+\beta-1 }{\alpha -1 } \text{ if } \alpha &gt; 1\\&#10;&amp; \operatorname{E}\left [\frac{1}{1-X} \right ] =\frac{\alpha+\beta-1 }{\beta-1 } \text{ if } \beta &gt; 1&#10;\end{align}"></span></dd></dl>
<p>The following transformation by dividing the variable <i>X</i> by its mirror-image <i>X</i>/(1&#160;&#160;<i>X</i>) results in the expected value of the "inverted beta distribution" or <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a> (also known as beta distribution of the second kind or <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson's Type VI</a>):<sup id="cite_ref-JKB_1-13" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {E} \left[{\frac {X}{1-X}}\right]={\frac {\alpha }{\beta -1}}{\text{ if }}\beta &gt;1\\&amp;\operatorname {E} \left[{\frac {1-X}{X}}\right]={\frac {\beta }{\alpha -1}}{\text{ if }}\alpha &gt;1\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {E} \left[{\frac {X}{1-X}}\right]={\frac {\alpha }{\beta -1}}{\text{ if }}\beta &gt;1\\&amp;\operatorname {E} \left[{\frac {1-X}{X}}\right]={\frac {\beta }{\alpha -1}}{\text{ if }}\alpha &gt;1\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40c2f689db6159d44deb7d06de6dedcadc4ca82" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:29.302ex; height:12.509ex;" alt=" \begin{align}&#10;&amp; \operatorname{E}\left[\frac{X}{1-X}\right] =\frac{\alpha}{\beta - 1 } \text{ if }\beta &gt; 1\\&#10;&amp; \operatorname{E}\left[\frac{1-X}{X}\right] =\frac{\beta}{\alpha- 1 }\text{ if }\alpha &gt; 1&#10;\end{align} "></span></dd></dl>
<p>Variances of these transformed variables can be obtained by integration, as the expected values of the second moments centered on the corresponding variables:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} \left[{\frac {1}{X}}\right]=\operatorname {E} \left[\left({\frac {1}{X}}-\operatorname {E} \left[{\frac {1}{X}}\right]\right)^{2}\right]=}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
<mo>=</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} \left[{\frac {1}{X}}\right]=\operatorname {E} \left[\left({\frac {1}{X}}-\operatorname {E} \left[{\frac {1}{X}}\right]\right)^{2}\right]=}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/563b0d2b40921c19ff1b1b6259f4297634f71062" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.404ex; height:7.509ex;" alt="{\displaystyle \operatorname {var} \left[{\frac {1}{X}}\right]=\operatorname {E} \left[\left({\frac {1}{X}}-\operatorname {E} \left[{\frac {1}{X}}\right]\right)^{2}\right]=}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} \left[{\frac {1-X}{X}}\right]=\operatorname {E} \left[\left({\frac {1-X}{X}}-\operatorname {E} \left[{\frac {1-X}{X}}\right]\right)^{2}\right]={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(\alpha -1)^{2}}}{\text{ if }}\alpha &gt;2}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>2</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} \left[{\frac {1-X}{X}}\right]=\operatorname {E} \left[\left({\frac {1-X}{X}}-\operatorname {E} \left[{\frac {1-X}{X}}\right]\right)^{2}\right]={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(\alpha -1)^{2}}}{\text{ if }}\alpha &gt;2}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4d1f81494368d71838507bdbbbbb967a75c0f90" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:72.816ex; height:7.509ex;" alt="{\displaystyle \operatorname {var} \left[{\frac {1-X}{X}}\right]=\operatorname {E} \left[\left({\frac {1-X}{X}}-\operatorname {E} \left[{\frac {1-X}{X}}\right]\right)^{2}\right]={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(\alpha -1)^{2}}}{\text{ if }}\alpha &gt;2}"></span></dd></dl>
<p>The following variance of the variable <i>X</i> divided by its mirror-image (<i>X</i>/(1<i>X</i>) results in the variance of the "inverted beta distribution" or <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a> (also known as beta distribution of the second kind or <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson's Type VI</a>):<sup id="cite_ref-JKB_1-14" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} \left[{\frac {1}{1-X}}\right]=\operatorname {E} \left[\left({\frac {1}{1-X}}-\operatorname {E} \left[{\frac {1}{1-X}}\right]\right)^{2}\right]=\operatorname {var} \left[{\frac {X}{1-X}}\right]=}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} \left[{\frac {1}{1-X}}\right]=\operatorname {E} \left[\left({\frac {1}{1-X}}-\operatorname {E} \left[{\frac {1}{1-X}}\right]\right)^{2}\right]=\operatorname {var} \left[{\frac {X}{1-X}}\right]=}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9391bc56ac6980c6cf6e1a821fc1168a9cfcdc33" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.086ex; height:7.509ex;" alt="{\displaystyle \operatorname {var} \left[{\frac {1}{1-X}}\right]=\operatorname {E} \left[\left({\frac {1}{1-X}}-\operatorname {E} \left[{\frac {1}{1-X}}\right]\right)^{2}\right]=\operatorname {var} \left[{\frac {X}{1-X}}\right]=}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[\left({\frac {X}{1-X}}-\operatorname {E} \left[{\frac {X}{1-X}}\right]\right)^{2}\right]={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}{\text{ if }}\beta &gt;2}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>2</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[\left({\frac {X}{1-X}}-\operatorname {E} \left[{\frac {X}{1-X}}\right]\right)^{2}\right]={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}{\text{ if }}\beta &gt;2}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac107de23ff64a12fc3ca45910d7dba24821ea2b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:56.675ex; height:7.509ex;" alt="{\displaystyle \operatorname {E} \left[\left({\frac {X}{1-X}}-\operatorname {E} \left[{\frac {X}{1-X}}\right]\right)^{2}\right]={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}{\text{ if }}\beta &gt;2}"></span></dd></dl>
<p>The covariances are:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {cov} \left[{\frac {1}{X}},{\frac {1}{1-X}}\right]=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {X}{1-X}}\right]=\operatorname {cov} \left[{\frac {1}{X}},{\frac {X}{1-X}}\right]=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {1}{1-X}}\right]={\frac {\alpha +\beta -1}{(\alpha -1)(\beta -1)}}{\text{ if }}\alpha ,\beta &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {cov} \left[{\frac {1}{X}},{\frac {1}{1-X}}\right]=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {X}{1-X}}\right]=\operatorname {cov} \left[{\frac {1}{X}},{\frac {X}{1-X}}\right]=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {1}{1-X}}\right]={\frac {\alpha +\beta -1}{(\alpha -1)(\beta -1)}}{\text{ if }}\alpha ,\beta &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2342c3fe24a7ed5b840fd9583c055aa5791486" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:112.5ex; height:6.343ex;" alt="\operatorname{cov}\left [\frac{1}{X},\frac{1}{1-X} \right ] = \operatorname{cov}\left[\frac{1-X}{X},\frac{X}{1-X} \right] =\operatorname{cov}\left[\frac{1}{X},\frac{X}{1-X}\right ] = \operatorname{cov}\left[\frac{1-X}{X},\frac{1}{1-X} \right] =\frac{\alpha+\beta-1}{(\alpha-1)(\beta-1) } \text{ if } \alpha, \beta &gt; 1"></span></dd></dl>
<p>These expectations and variances appear in the four-parameter Fisher information matrix (<a href="#Fisher_information">§&#160;Fisher information</a>.)
</p>
<h5><span class="mw-headline" id="Moments_of_logarithmically_transformed_random_variables">Moments of logarithmically transformed random variables</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=30" title="Edit section: Moments of logarithmically transformed random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Logit.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Logit.svg/350px-Logit.svg.png" decoding="async" width="350" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Logit.svg/525px-Logit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Logit.svg/700px-Logit.svg.png 2x" data-file-width="430" data-file-height="280" /></a><figcaption>Plot of logit(<i>X</i>) = ln(<i>X</i>/(1<i>X</i>)) (vertical axis) vs. <i>X</i> in the domain of 0 to 1 (horizontal axis). Logit transformations are interesting, as they usually transform various shapes (including J-shapes) into (usually skewed) bell-shaped densities over the logit variable, and they may remove the end singularities over the original variable</figcaption></figure>
<p>Expected values for <a href="/wiki/Logarithm_transformation" class="mw-redirect" title="Logarithm transformation">logarithmic transformations</a> (useful for <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimates, see <a href="#Parameter_estimation,_Maximum_likelihood">§&#160;Parameter estimation, Maximum likelihood</a>) are discussed in this section. The following logarithmic linear transformations are related to the geometric means <i>G<sub>X</sub></i> and <i>G</i><sub>(1<i>X</i>)</sub> (see <a href="#Geometric_Mean">§&#160;Geometric Mean</a>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [\ln(X)]&amp;=\psi (\alpha )-\psi (\alpha +\beta )=-\operatorname {E} \left[\ln \left({\frac {1}{X}}\right)\right],\\\operatorname {E} [\ln(1-X)]&amp;=\psi (\beta )-\psi (\alpha +\beta )=-\operatorname {E} \left[\ln \left({\frac {1}{1-X}}\right)\right].\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [\ln(X)]&amp;=\psi (\alpha )-\psi (\alpha +\beta )=-\operatorname {E} \left[\ln \left({\frac {1}{X}}\right)\right],\\\operatorname {E} [\ln(1-X)]&amp;=\psi (\beta )-\psi (\alpha +\beta )=-\operatorname {E} \left[\ln \left({\frac {1}{1-X}}\right)\right].\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6125bcdc7551c82f7451b444b941c97b83abdf20" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:55.093ex; height:12.509ex;" alt="\begin{align}&#10;\operatorname{E}[\ln(X)] &amp;= \psi(\alpha) - \psi(\alpha + \beta)= - \operatorname{E}\left[\ln \left (\frac{1}{X} \right )\right],\\&#10;\operatorname{E}[\ln(1-X)] &amp;=\psi(\beta) - \psi(\alpha + \beta)= - \operatorname{E} \left[\ln \left (\frac{1}{1-X} \right )\right].&#10;\end{align}"></span></dd></dl>
<p>Where the <b><a href="/wiki/Digamma_function" title="Digamma function">digamma function</a></b> ψ(α) is defined as the <a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">logarithmic derivative</a> of the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>:<sup id="cite_ref-Abramowitz_17-2" class="reference"><a href="#cite_note-Abramowitz-17">&#91;17&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\alpha )={\frac {d\ln \Gamma (\alpha )}{d\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>d</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>d</mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi (\alpha )={\frac {d\ln \Gamma (\alpha )}{d\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98688e30ed6ed2752b70b23fa2f1ad775409ca6e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.424ex; height:5.843ex;" alt="\psi(\alpha) = \frac{d \ln\Gamma(\alpha)}{d\alpha}"></span></dd></dl>
<p><a href="/wiki/Logit" title="Logit">Logit</a> transformations are interesting,<sup id="cite_ref-MacKay_23-0" class="reference"><a href="#cite_note-MacKay-23">&#91;23&#93;</a></sup> as they usually transform various shapes (including J-shapes) into (usually skewed) bell-shaped densities over the logit variable, and they may remove the end singularities over the original variable:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} \left[\ln \left({\frac {X}{1-X}}\right)\right]&amp;=\psi (\alpha )-\psi (\beta )=\operatorname {E} [\ln(X)]+\operatorname {E} \left[\ln \left({\frac {1}{1-X}}\right)\right],\\\operatorname {E} \left[\ln \left({\frac {1-X}{X}}\right)\right]&amp;=\psi (\beta )-\psi (\alpha )=-\operatorname {E} \left[\ln \left({\frac {X}{1-X}}\right)\right].\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>+</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} \left[\ln \left({\frac {X}{1-X}}\right)\right]&amp;=\psi (\alpha )-\psi (\beta )=\operatorname {E} [\ln(X)]+\operatorname {E} \left[\ln \left({\frac {1}{1-X}}\right)\right],\\\operatorname {E} \left[\ln \left({\frac {1-X}{X}}\right)\right]&amp;=\psi (\beta )-\psi (\alpha )=-\operatorname {E} \left[\ln \left({\frac {X}{1-X}}\right)\right].\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/519d77a6f894b5ebc9240b813a675477194f8858" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:63.78ex; height:12.509ex;" alt="\begin{align}&#10;\operatorname{E}\left[\ln \left (\frac{X}{1-X} \right ) \right] &amp;=\psi(\alpha) - \psi(\beta)= \operatorname{E}[\ln(X)] +\operatorname{E} \left[\ln \left (\frac{1}{1-X} \right) \right],\\&#10;\operatorname{E}\left [\ln \left (\frac{1-X}{X} \right ) \right ] &amp;=\psi(\beta) - \psi(\alpha)= - \operatorname{E} \left[\ln \left (\frac{X}{1-X} \right) \right] .&#10;\end{align}"></span></dd></dl>
<p>Johnson<sup id="cite_ref-JohnsonLogInv_24-0" class="reference"><a href="#cite_note-JohnsonLogInv-24">&#91;24&#93;</a></sup> considered the distribution of the <a href="/wiki/Logit" title="Logit">logit</a> - transformed variable ln(<i>X</i>/1<i>X</i>), including its moment generating function and approximations for large values of the shape parameters. This transformation extends the finite support [0, 1] based on the original variable <i>X</i> to infinite support in both directions of the real line (−∞, +∞).
</p><p>Higher order logarithmic moments can be derived by using the representation of a beta distribution as a proportion of two Gamma distributions and differentiating through the integral. They can be expressed in terms of higher order poly-gamma functions as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} \left[\ln ^{2}(X)\right]&amp;=(\psi (\alpha )-\psi (\alpha +\beta ))^{2}+\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ),\\\operatorname {E} \left[\ln ^{2}(1-X)\right]&amp;=(\psi (\beta )-\psi (\alpha +\beta ))^{2}+\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ),\\\operatorname {E} \left[\ln(X)\ln(1-X)\right]&amp;=(\psi (\alpha )-\psi (\alpha +\beta ))(\psi (\beta )-\psi (\alpha +\beta ))-\psi _{1}(\alpha +\beta ).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} \left[\ln ^{2}(X)\right]&amp;=(\psi (\alpha )-\psi (\alpha +\beta ))^{2}+\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ),\\\operatorname {E} \left[\ln ^{2}(1-X)\right]&amp;=(\psi (\beta )-\psi (\alpha +\beta ))^{2}+\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ),\\\operatorname {E} \left[\ln(X)\ln(1-X)\right]&amp;=(\psi (\alpha )-\psi (\alpha +\beta ))(\psi (\beta )-\psi (\alpha +\beta ))-\psi _{1}(\alpha +\beta ).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b42eb1276e349df39df3051df11e0e16afe88e2e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:72.827ex; height:10.176ex;" alt="\begin{align}&#10;\operatorname{E} \left [\ln^2(X) \right ] &amp;= (\psi(\alpha) - \psi(\alpha + \beta))^2+\psi_1(\alpha)-\psi_1(\alpha+\beta), \\&#10;\operatorname{E} \left [\ln^2(1-X) \right ] &amp;= (\psi(\beta) - \psi(\alpha + \beta))^2+\psi_1(\beta)-\psi_1(\alpha+\beta), \\&#10;\operatorname{E} \left [\ln (X)\ln(1-X) \right ] &amp;=(\psi(\alpha) - \psi(\alpha + \beta))(\psi(\beta) - \psi(\alpha + \beta)) -\psi_1(\alpha+\beta).&#10;\end{align}"></span></dd></dl>
<p>therefore the <a href="/wiki/Variance" title="Variance">variance</a> of the logarithmic variables and <a href="/wiki/Covariance" title="Covariance">covariance</a> of ln(<i>X</i>) and ln(1<i>X</i>) are:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {cov} [\ln(X),\ln(1-X)]&amp;=\operatorname {E} \left[\ln(X)\ln(1-X)\right]-\operatorname {E} [\ln(X)]\operatorname {E} [\ln(1-X)]=-\psi _{1}(\alpha +\beta )\\&amp;\\\operatorname {var} [\ln X]&amp;=\operatorname {E} [\ln ^{2}(X)]-(\operatorname {E} [\ln(X)])^{2}\\&amp;=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\alpha )+\operatorname {cov} [\ln(X),\ln(1-X)]\\&amp;\\\operatorname {var} [\ln(1-X)]&amp;=\operatorname {E} [\ln ^{2}(1-X)]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\beta )+\operatorname {cov} [\ln(X),\ln(1-X)]\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd />
</mtr>
<mtr>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd />
</mtr>
<mtr>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {cov} [\ln(X),\ln(1-X)]&amp;=\operatorname {E} \left[\ln(X)\ln(1-X)\right]-\operatorname {E} [\ln(X)]\operatorname {E} [\ln(1-X)]=-\psi _{1}(\alpha +\beta )\\&amp;\\\operatorname {var} [\ln X]&amp;=\operatorname {E} [\ln ^{2}(X)]-(\operatorname {E} [\ln(X)])^{2}\\&amp;=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\alpha )+\operatorname {cov} [\ln(X),\ln(1-X)]\\&amp;\\\operatorname {var} [\ln(1-X)]&amp;=\operatorname {E} [\ln ^{2}(1-X)]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\beta )+\operatorname {cov} [\ln(X),\ln(1-X)]\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76df52180954247e1d1aa62646a20f7e3d68a36" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -13.505ex; width:83.168ex; height:28.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {cov} [\ln(X),\ln(1-X)]&amp;=\operatorname {E} \left[\ln(X)\ln(1-X)\right]-\operatorname {E} [\ln(X)]\operatorname {E} [\ln(1-X)]=-\psi _{1}(\alpha +\beta )\\&amp;\\\operatorname {var} [\ln X]&amp;=\operatorname {E} [\ln ^{2}(X)]-(\operatorname {E} [\ln(X)])^{2}\\&amp;=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\alpha )+\operatorname {cov} [\ln(X),\ln(1-X)]\\&amp;\\\operatorname {var} [\ln(1-X)]&amp;=\operatorname {E} [\ln ^{2}(1-X)]-(\operatorname {E} [\ln(1-X)])^{2}\\&amp;=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )\\&amp;=\psi _{1}(\beta )+\operatorname {cov} [\ln(X),\ln(1-X)]\end{aligned}}}"></span></dd></dl>
<p>where the <b><a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a></b>, denoted ψ<sub>1</sub>(α), is the second of the <a href="/wiki/Polygamma_function" title="Polygamma function">polygamma functions</a>, and is defined as the derivative of the <a href="/wiki/Digamma" title="Digamma">digamma</a> function:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{d\alpha ^{2}}}={\frac {d\psi (\alpha )}{d\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>d</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>d</mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>d</mi>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>d</mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{d\alpha ^{2}}}={\frac {d\psi (\alpha )}{d\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c72d1474f92c4b44d97f6bad50fe900521d0c9f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:29.495ex; height:6.176ex;" alt="\psi_1(\alpha) = \frac{d^2\ln\Gamma(\alpha)}{d\alpha^2}= \frac{d \psi(\alpha)}{d\alpha}"></span>.</dd></dl>
<p>The variances and covariance of the logarithmically transformed variables <i>X</i> and (1<i>X</i>) are different, in general, because the logarithmic transformation destroys the mirror-symmetry of the original variables <i>X</i> and (1<i>X</i>), as the logarithm approaches negative infinity for the variable approaching zero.
</p><p>These logarithmic variances and covariance are the elements of the <a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a> matrix for the beta distribution. They are also a measure of the curvature of the log likelihood function (see section on Maximum likelihood estimation).
</p><p>The variances of the log inverse variables are identical to the variances of the log variables:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {var} \left[\ln \left({\frac {1}{X}}\right)\right]&amp;=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ),\\\operatorname {var} \left[\ln \left({\frac {1}{1-X}}\right)\right]&amp;=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ),\\\operatorname {cov} \left[\ln \left({\frac {1}{X}}\right),\ln \left({\frac {1}{1-X}}\right)\right]&amp;=\operatorname {cov} [\ln(X),\ln(1-X)]=-\psi _{1}(\alpha +\beta ).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {var} \left[\ln \left({\frac {1}{X}}\right)\right]&amp;=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ),\\\operatorname {var} \left[\ln \left({\frac {1}{1-X}}\right)\right]&amp;=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ),\\\operatorname {cov} \left[\ln \left({\frac {1}{X}}\right),\ln \left({\frac {1}{1-X}}\right)\right]&amp;=\operatorname {cov} [\ln(X),\ln(1-X)]=-\psi _{1}(\alpha +\beta ).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d335167cf1713083b3fb1c4d0cfadb04c1d40d43" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:67.918ex; height:18.509ex;" alt="\begin{align}&#10;\operatorname{var}\left[\ln \left (\frac{1}{X} \right ) \right] &amp; =\operatorname{var}[\ln(X)] = \psi_1(\alpha) - \psi_1(\alpha + \beta), \\&#10;\operatorname{var}\left[\ln \left (\frac{1}{1-X} \right ) \right] &amp;=\operatorname{var}[\ln (1-X)] = \psi_1(\beta) - \psi_1(\alpha + \beta), \\&#10;\operatorname{cov}\left[\ln \left (\frac{1}{X} \right), \ln \left (\frac{1}{1-X}\right ) \right] &amp;=\operatorname{cov}[\ln(X),\ln(1-X)]= -\psi_1(\alpha + \beta).\end{align}"></span></dd></dl>
<p>It also follows that the variances of the <a href="/wiki/Logit" title="Logit">logit</a> transformed variables are:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} \left[\ln \left({\frac {X}{1-X}}\right)\right]=\operatorname {var} \left[\ln \left({\frac {1-X}{X}}\right)\right]=-\operatorname {cov} \left[\ln \left({\frac {X}{1-X}}\right),\ln \left({\frac {1-X}{X}}\right)\right]=\psi _{1}(\alpha )+\psi _{1}(\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} \left[\ln \left({\frac {X}{1-X}}\right)\right]=\operatorname {var} \left[\ln \left({\frac {1-X}{X}}\right)\right]=-\operatorname {cov} \left[\ln \left({\frac {X}{1-X}}\right),\ln \left({\frac {1-X}{X}}\right)\right]=\psi _{1}(\alpha )+\psi _{1}(\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb1b29b7309248f8859985ea134ab777c8ad91dc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:93.046ex; height:6.176ex;" alt="\operatorname{var}\left[\ln \left (\frac{X}{1-X} \right )\right]=\operatorname{var}\left[\ln \left (\frac{1-X}{X} \right ) \right]=-\operatorname{cov}\left [\ln \left (\frac{X}{1-X} \right ), \ln \left (\frac{1-X}{X} \right ) \right]= \psi_1(\alpha) + \psi_1(\beta)"></span></dd></dl>
<h3><span id="Quantities_of_information_.28entropy.29"></span><span class="mw-headline" id="Quantities_of_information_(entropy)">Quantities of information (entropy)</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=31" title="Edit section: Quantities of information (entropy)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<p>Given a beta distributed random variable, <i>X</i> ~ Beta(<i>α</i>, <i>β</i>), the <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> of <i>X</i> is (measured in <a href="/wiki/Nat_(unit)" title="Nat (unit)">nats</a>),<sup id="cite_ref-25" class="reference"><a href="#cite_note-25">&#91;25&#93;</a></sup> the expected value of the negative of the logarithm of the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}h(X)&amp;=\operatorname {E} [-\ln(f(x;\alpha ,\beta ))]\\[4pt]&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\\[4pt]&amp;=\ln(\mathrm {B} (\alpha ,\beta ))-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )+(\alpha +\beta -2)\psi (\alpha +\beta )\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>h</mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mo>&#x2212;<!-- --></mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}h(X)&amp;=\operatorname {E} [-\ln(f(x;\alpha ,\beta ))]\\[4pt]&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\\[4pt]&amp;=\ln(\mathrm {B} (\alpha ,\beta ))-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )+(\alpha +\beta -2)\psi (\alpha +\beta )\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc995dbbf41c91536ce4d0efaff554d8b0a77fe" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.361ex; margin-bottom: -0.311ex; width:72.92ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}h(X)&amp;=\operatorname {E} [-\ln(f(x;\alpha ,\beta ))]\\[4pt]&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\\[4pt]&amp;=\ln(\mathrm {B} (\alpha ,\beta ))-(\alpha -1)\psi (\alpha )-(\beta -1)\psi (\beta )+(\alpha +\beta -2)\psi (\alpha +\beta )\end{aligned}}}"></span></dd></dl>
<p>where <i>f</i>(<i>x</i>; <i>α</i>, <i>β</i>) is the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the beta distribution:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\alpha ,\beta )={\frac {1}{\mathrm {B} (\alpha ,\beta )}}x^{\alpha -1}(1-x)^{\beta -1}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle f(x;\alpha ,\beta )={\frac {1}{\mathrm {B} (\alpha ,\beta )}}x^{\alpha -1}(1-x)^{\beta -1}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15c1644449eb00c667267c7ba2cbc5925020a584" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:35.679ex; height:6.009ex;" alt="f(x;\alpha,\beta) = \frac{1}{\Beta(\alpha,\beta)} x^{\alpha-1}(1-x)^{\beta-1}"></span></dd></dl>
<p>The <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a> <i>ψ</i> appears in the formula for the differential entropy as a consequence of Euler's integral formula for the <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic numbers</a> which follows from the integral:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{1}{\frac {1-x^{\alpha -1}}{1-x}}\,dx=\psi (\alpha )-\psi (1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \int _{0}^{1}{\frac {1-x^{\alpha -1}}{1-x}}\,dx=\psi (\alpha )-\psi (1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/364bd5d460a8db9c5038b2f19cc1e5d088671ae8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.625ex; height:6.176ex;" alt="{\displaystyle \int _{0}^{1}{\frac {1-x^{\alpha -1}}{1-x}}\,dx=\psi (\alpha )-\psi (1)}"></span></dd></dl>
<p>The <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> of the beta distribution is negative for all values of <i>α</i> and <i>β</i> greater than zero, except at <i>α</i> = <i>β</i> = 1 (for which values the beta distribution is the same as the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a>), where the <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> reaches its <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">maximum</a> value of zero. It is to be expected that the maximum entropy should take place when the beta distribution becomes equal to the uniform distribution, since uncertainty is maximal when all possible events are equiprobable.
</p><p>For <i>α</i> or <i>β</i> approaching zero, the <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> approaches its <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">minimum</a> value of negative infinity. For (either or both) <i>α</i> or <i>β</i> approaching zero, there is a maximum amount of order: all the probability density is concentrated at the ends, and there is zero probability density at points located between the ends. Similarly for (either or both) <i>α</i> or <i>β</i> approaching infinity, the differential entropy approaches its minimum value of negative infinity, and a maximum amount of order. If either <i>α</i> or <i>β</i> approaches infinity (and the other is finite) all the probability density is concentrated at an end, and the probability density is zero everywhere else. If both shape parameters are equal (the symmetric case), <i>α</i> = <i>β</i>, and they approach infinity simultaneously, the probability density becomes a spike (<a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>) concentrated at the middle <i>x</i> = 1/2, and hence there is 100% probability at the middle <i>x</i> = 1/2 and zero probability everywhere else.
</p><p><span typeof="mw:File"><a href="/wiki/File:Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e2/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/650px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="730" data-file-height="449" /></a></span><span typeof="mw:File"><a href="/wiki/File:Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg/325px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg/488px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg/650px-Differential_Entropy_Beta_Distribution_for_alpha_and_beta_from_0.1_to_5_-_J._Rodal.jpg 2x" data-file-width="730" data-file-height="449" /></a></span>
</p><p>The (continuous case) <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> was introduced by Shannon in his original paper (where he named it the "entropy of a continuous distribution"), as the concluding part of the same paper where he defined the <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">discrete entropy</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26">&#91;26&#93;</a></sup> It is known since then that the differential entropy may differ from the infinitesimal limit of the discrete entropy by an infinite offset, therefore the differential entropy can be negative (as it is for the beta distribution). What really matters is the relative value of entropy.
</p><p>Given two beta distributed random variables, <i>X</i><sub>1</sub> ~ Beta(<i>α</i>, <i>β</i>) and <i>X</i><sub>2</sub> ~ Beta(<i>α<span class="nowrap" style="padding-left:0.05em;"></span></i>, <i>β<span class="nowrap" style="padding-left:0.05em;"></span></i>), the <a href="/wiki/Cross-entropy" title="Cross-entropy">cross-entropy</a> is (measured in nats)<sup id="cite_ref-Cover_and_Thomas_27-0" class="reference"><a href="#cite_note-Cover_and_Thomas-27">&#91;27&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}H(X_{1},X_{2})&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha ',\beta '))\,dx\\[4pt]&amp;=\ln \left(\mathrm {B} (\alpha ',\beta ')\right)-(\alpha '-1)\psi (\alpha )-(\beta '-1)\psi (\beta )+(\alpha '+\beta '-2)\psi (\alpha +\beta ).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>H</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mo>&#x2212;<!-- --></mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>,</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>,</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>+</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}H(X_{1},X_{2})&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha ',\beta '))\,dx\\[4pt]&amp;=\ln \left(\mathrm {B} (\alpha ',\beta ')\right)-(\alpha '-1)\psi (\alpha )-(\beta '-1)\psi (\beta )+(\alpha '+\beta '-2)\psi (\alpha +\beta ).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711e6ef61e56ccd8ba515b8db5013d1847939ec8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:83.425ex; height:10.343ex;" alt="{\displaystyle {\begin{aligned}H(X_{1},X_{2})&amp;=\int _{0}^{1}-f(x;\alpha ,\beta )\ln(f(x;\alpha &#039;,\beta &#039;))\,dx\\[4pt]&amp;=\ln \left(\mathrm {B} (\alpha &#039;,\beta &#039;)\right)-(\alpha &#039;-1)\psi (\alpha )-(\beta &#039;-1)\psi (\beta )+(\alpha &#039;+\beta &#039;-2)\psi (\alpha +\beta ).\end{aligned}}}"></span></dd></dl>
<p>The <a href="/wiki/Cross_entropy" class="mw-redirect" title="Cross entropy">cross entropy</a> has been used as an error metric to measure the distance between two hypotheses.<sup id="cite_ref-Plunkett_28-0" class="reference"><a href="#cite_note-Plunkett-28">&#91;28&#93;</a></sup><sup id="cite_ref-Nallapati_29-0" class="reference"><a href="#cite_note-Nallapati-29">&#91;29&#93;</a></sup> Its absolute value is minimum when the two distributions are identical. It is the information measure most closely related to the log maximum likelihood <sup id="cite_ref-Cover_and_Thomas_27-1" class="reference"><a href="#cite_note-Cover_and_Thomas-27">&#91;27&#93;</a></sup>(see section on "Parameter estimation. Maximum likelihood estimation")).
</p><p>The relative entropy, or <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">Kullback&#8211;Leibler divergence</a> <i>D</i><sub>KL</sub>(<i>X</i><sub>1</sub> || <i>X</i><sub>2</sub>), is a measure of the inefficiency of assuming that the distribution is <i>X</i><sub>2</sub> ~ Beta(<i>α<span class="nowrap" style="padding-left:0.05em;"></span></i>, <i>β<span class="nowrap" style="padding-left:0.05em;"></span></i>) when the distribution is really <i>X</i><sub>1</sub> ~ Beta(<i>α</i>, <i>β</i>). It is defined as follows (measured in nats).
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}D_{\mathrm {KL} }(X_{1}||X_{2})&amp;=\int _{0}^{1}f(x;\alpha ,\beta )\ln \left({\frac {f(x;\alpha ,\beta )}{f(x;\alpha ',\beta ')}}\right)\,dx\\[4pt]&amp;=\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\right)-\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha ',\beta '))\,dx\right)\\[4pt]&amp;=-h(X_{1})+H(X_{1},X_{2})\\[4pt]&amp;=\ln \left({\frac {\mathrm {B} (\alpha ',\beta ')}{\mathrm {B} (\alpha ,\beta )}}\right)+(\alpha -\alpha ')\psi (\alpha )+(\beta -\beta ')\psi (\beta )+(\alpha '-\alpha +\beta '-\beta )\psi (\alpha +\beta ).\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>,</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>,</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mi>d</mi>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>h</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>H</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>,</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}D_{\mathrm {KL} }(X_{1}||X_{2})&amp;=\int _{0}^{1}f(x;\alpha ,\beta )\ln \left({\frac {f(x;\alpha ,\beta )}{f(x;\alpha ',\beta ')}}\right)\,dx\\[4pt]&amp;=\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\right)-\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha ',\beta '))\,dx\right)\\[4pt]&amp;=-h(X_{1})+H(X_{1},X_{2})\\[4pt]&amp;=\ln \left({\frac {\mathrm {B} (\alpha ',\beta ')}{\mathrm {B} (\alpha ,\beta )}}\right)+(\alpha -\alpha ')\psi (\alpha )+(\beta -\beta ')\psi (\beta )+(\alpha '-\alpha +\beta '-\beta )\psi (\alpha +\beta ).\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5002efd169d75c8ab9a110dc2d4bfb0a23a76250" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:93.524ex; height:25.509ex;" alt="{\displaystyle {\begin{aligned}D_{\mathrm {KL} }(X_{1}||X_{2})&amp;=\int _{0}^{1}f(x;\alpha ,\beta )\ln \left({\frac {f(x;\alpha ,\beta )}{f(x;\alpha &#039;,\beta &#039;)}}\right)\,dx\\[4pt]&amp;=\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha ,\beta ))\,dx\right)-\left(\int _{0}^{1}f(x;\alpha ,\beta )\ln(f(x;\alpha &#039;,\beta &#039;))\,dx\right)\\[4pt]&amp;=-h(X_{1})+H(X_{1},X_{2})\\[4pt]&amp;=\ln \left({\frac {\mathrm {B} (\alpha &#039;,\beta &#039;)}{\mathrm {B} (\alpha ,\beta )}}\right)+(\alpha -\alpha &#039;)\psi (\alpha )+(\beta -\beta &#039;)\psi (\beta )+(\alpha &#039;-\alpha +\beta &#039;-\beta )\psi (\alpha +\beta ).\end{aligned}}}"></span></dd></dl>
<p>The relative entropy, or <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">Kullback&#8211;Leibler divergence</a>, is always non-negative. A few numerical examples follow:
</p>
<ul><li><i>X</i><sub>1</sub> ~ Beta(1, 1) and <i>X</i><sub>2</sub> ~ Beta(3, 3); <i>D</i><sub>KL</sub>(<i>X</i><sub>1</sub> || <i>X</i><sub>2</sub>) = 0.598803; <i>D</i><sub>KL</sub>(<i>X</i><sub>2</sub> || <i>X</i><sub>1</sub>) = 0.267864; <i>h</i>(<i>X</i><sub>1</sub>) = 0; <i>h</i>(<i>X</i><sub>2</sub>) = 0.267864</li>
<li><i>X</i><sub>1</sub> ~ Beta(3, 0.5) and <i>X</i><sub>2</sub> ~ Beta(0.5, 3); <i>D</i><sub>KL</sub>(<i>X</i><sub>1</sub> || <i>X</i><sub>2</sub>) = 7.21574; <i>D</i><sub>KL</sub>(<i>X</i><sub>2</sub> || <i>X</i><sub>1</sub>) = 7.21574; <i>h</i>(<i>X</i><sub>1</sub>) = 1.10805; <i>h</i>(<i>X</i><sub>2</sub>) = 1.10805.</li></ul>
<p>The <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">Kullback&#8211;Leibler divergence</a> is not symmetric <i>D</i><sub>KL</sub>(<i>X</i><sub>1</sub> || <i>X</i><sub>2</sub>) ≠ <i>D</i><sub>KL</sub>(<i>X</i><sub>2</sub> || <i>X</i><sub>1</sub>) for the case in which the individual beta distributions Beta(1, 1) and Beta(3, 3) are symmetric, but have different entropies <i>h</i>(<i>X</i><sub>1</sub>) ≠ <i>h</i>(<i>X</i><sub>2</sub>). The value of the Kullback divergence depends on the direction traveled: whether going from a higher (differential) entropy to a lower (differential) entropy or the other way around. In the numerical example above, the Kullback divergence measures the inefficiency of assuming that the distribution is (bell-shaped) Beta(3, 3), rather than (uniform) Beta(1, 1). The "h" entropy of Beta(1, 1) is higher than the "h" entropy of Beta(3, 3) because the uniform distribution Beta(1, 1) has a maximum amount of disorder. The Kullback divergence is more than two times higher (0.598803 instead of 0.267864) when measured in the direction of decreasing entropy: the direction that assumes that the (uniform) Beta(1, 1) distribution is (bell-shaped) Beta(3, 3) rather than the other way around. In this restricted sense, the Kullback divergence is consistent with the <a href="/wiki/Second_law_of_thermodynamics" title="Second law of thermodynamics">second law of thermodynamics</a>.
</p><p>The <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">Kullback&#8211;Leibler divergence</a> is symmetric <i>D</i><sub>KL</sub>(<i>X</i><sub>1</sub> || <i>X</i><sub>2</sub>) = <i>D</i><sub>KL</sub>(<i>X</i><sub>2</sub> || <i>X</i><sub>1</sub>) for the skewed cases Beta(3, 0.5) and Beta(0.5, 3) that have equal differential entropy <i>h</i>(<i>X</i><sub>1</sub>) = <i>h</i>(<i>X</i><sub>2</sub>).
</p><p>The symmetry condition:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}),{\text{ for (skewed) }}\alpha \neq \beta }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>h</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>h</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;for (skewed)&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2260;<!-- ≠ --></mo>
<mi>&#x03B2;<!-- β --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}),{\text{ for (skewed) }}\alpha \neq \beta }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/848399623884f78aa482d9077b0100a1e9b80e77" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:69.517ex; height:2.843ex;" alt="{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}),{\text{ for (skewed) }}\alpha \neq \beta }"></span></dd></dl>
<p>follows from the above definitions and the mirror-symmetry <i>f</i>(<i>x</i>; <i>α</i>, <i>β</i>) = <i>f</i>(1<i>x</i>; <i>α</i>, <i>β</i>) enjoyed by the beta distribution.
</p>
<h3><span class="mw-headline" id="Relationships_between_statistical_measures">Relationships between statistical measures</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=32" title="Edit section: Relationships between statistical measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span id="Mean.2C_mode_and_median_relationship"></span><span class="mw-headline" id="Mean,_mode_and_median_relationship">Mean, mode and median relationship</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=33" title="Edit section: Mean, mode and median relationship"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>If 1 &lt; α &lt; β then mode ≤ median ≤ mean.<sup id="cite_ref-Kerman2011_9-1" class="reference"><a href="#cite_note-Kerman2011-9">&#91;9&#93;</a></sup> Expressing the mode (only for α, β &gt; 1), and the mean in terms of α and β:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}\leq {\text{median}}\leq {\frac {\alpha }{\alpha +\beta }},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>&#x2264;<!-- ≤ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&#x2264;<!-- ≤ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}\leq {\text{median}}\leq {\frac {\alpha }{\alpha +\beta }},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce75b15e77da7773748f47ccb73d08207595281" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.202ex; height:5.676ex;" alt="{\displaystyle {\frac {\alpha -1}{\alpha +\beta -2}}\leq {\text{median}}\leq {\frac {\alpha }{\alpha +\beta }},}"></span></dd></dl>
<p>If 1 &lt; β &lt; α then the order of the inequalities are reversed. For α, β &gt; 1 the absolute distance between the mean and the median is less than 5% of the distance between the maximum and minimum values of <i>x</i>. On the other hand, the absolute distance between the mean and the mode can reach 50% of the distance between the maximum and minimum values of <i>x</i>, for the (<a href="/wiki/Pathological_(mathematics)" title="Pathological (mathematics)">pathological</a>) case of α = 1 and β = 1, for which values the beta distribution approaches the uniform distribution and the <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> approaches its <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">maximum</a> value, and hence maximum "disorder".
</p><p>For example, for α = 1.0001 and β = 1.00000001:
</p>
<ul><li>mode = 0.9999; PDF(mode) = 1.00010</li>
<li>mean = 0.500025; PDF(mean) = 1.00003</li>
<li>median = 0.500035; PDF(median) = 1.00003</li>
<li>mean mode = 0.499875</li>
<li>mean median = 9.65538 × 10<sup>6</sup></li></ul>
<p>where PDF stands for the value of the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a>.
</p><p><span typeof="mw:File"><a href="/wiki/File:Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/f/ff/Mean_Median_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="633" data-file-height="370" /></a></span>
<span typeof="mw:File"><a href="/wiki/File:Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/325px-Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg" decoding="async" width="325" height="190" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg/488px-Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/8/88/Mean_Mode_Difference_-_Beta_Distribution_for_alpha_and_beta_from_1_to_5_-_J._Rodal.jpg 2x" data-file-width="633" data-file-height="370" /></a></span>
</p>
<h4><span id="Mean.2C_geometric_mean_and_harmonic_mean_relationship"></span><span class="mw-headline" id="Mean,_geometric_mean_and_harmonic_mean_relationship">Mean, geometric mean and harmonic mean relationship</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=34" title="Edit section: Mean, geometric mean and harmonic mean relationship"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Mean,_Median,_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png/220px-Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png" decoding="async" width="220" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png/330px-Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png/440px-Mean%2C_Median%2C_Geometric_Mean_and_Harmonic_Mean_for_Beta_distribution_with_alpha_%3D_beta_from_0_to_5_-_J._Rodal.png 2x" data-file-width="1706" data-file-height="1027" /></a><figcaption>:Mean, Median, Geometric Mean and Harmonic Mean for Beta distribution with 0 &lt; α = β &lt; 5</figcaption></figure>
<p>It is known from the <a href="/wiki/Inequality_of_arithmetic_and_geometric_means" class="mw-redirect" title="Inequality of arithmetic and geometric means">inequality of arithmetic and geometric means</a> that the geometric mean is lower than the mean. Similarly, the harmonic mean is lower than the geometric mean. The accompanying plot shows that for α = β, both the mean and the median are exactly equal to 1/2, regardless of the value of α = β, and the mode is also equal to 1/2 for α = β &gt; 1, however the geometric and harmonic means are lower than 1/2 and they only approach this value asymptotically as α = β → ∞.
</p>
<h4><span class="mw-headline" id="Kurtosis_bounded_by_the_square_of_the_skewness">Kurtosis bounded by the square of the skewness</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=35" title="Edit section: Kurtosis bounded by the square of the skewness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:(alpha_and_beta)_Parameter_estimates_vs._excess_Kurtosis_and_(squared)_Skewness_Beta_distribution_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/220px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/330px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/440px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Beta distribution α and β parameters vs. excess Kurtosis and squared Skewness</figcaption></figure>
<p>As remarked by <a href="/wiki/William_Feller" title="William Feller">Feller</a>,<sup id="cite_ref-Feller_5-2" class="reference"><a href="#cite_note-Feller-5">&#91;5&#93;</a></sup> in the <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson system</a> the beta probability density appears as <a href="/wiki/Pearson_distribution" title="Pearson distribution">type I</a> (any difference between the beta distribution and Pearson's type I distribution is only superficial and it makes no difference for the following discussion regarding the relationship between kurtosis and skewness). <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> showed, in Plate 1 of his paper <sup id="cite_ref-Pearson_20-1" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup> published in 1916, a graph with the <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> as the vertical axis (<a href="/wiki/Ordinate" class="mw-redirect" title="Ordinate">ordinate</a>) and the square of the <a href="/wiki/Skewness" title="Skewness">skewness</a> as the horizontal axis (<a href="/wiki/Abscissa" class="mw-redirect" title="Abscissa">abscissa</a>), in which a number of distributions were displayed.<sup id="cite_ref-Egon_30-0" class="reference"><a href="#cite_note-Egon-30">&#91;30&#93;</a></sup> The region occupied by the beta distribution is bounded by the following two <a href="/wiki/Line_(geometry)" title="Line (geometry)">lines</a> in the (skewness<sup>2</sup>,kurtosis) <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">plane</a>, or the (skewness<sup>2</sup>,excess kurtosis) <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">plane</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{skewness}})^{2}+1&lt;{\text{kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}+3}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<mn>1</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<mn>3</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{skewness}})^{2}+1&lt;{\text{kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}+3}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2061054109329b1c61c8bc91e10a8a45e80b9dc2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:47.93ex; height:5.176ex;" alt="(\text{skewness})^2+1&lt; \text{kurtosis}&lt; \frac{3}{2} (\text{skewness})^2 + 3"></span></dd></dl>
<p>or, equivalently,
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{skewness}})^{2}-2&lt;{\text{excess kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{skewness}})^{2}-2&lt;{\text{excess kurtosis}}&lt;{\frac {3}{2}}({\text{skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f75ee7e52ed7a7bceb6f1d754ee547640bebb19f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:50.665ex; height:5.176ex;" alt="(\text{skewness})^2-2&lt; \text{excess kurtosis}&lt; \frac{3}{2} (\text{skewness})^2"></span></dd></dl>
<p>At a time when there were no powerful digital computers, <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> accurately computed further boundaries,<sup id="cite_ref-Hahn_and_Shapiro_31-0" class="reference"><a href="#cite_note-Hahn_and_Shapiro-31">&#91;31&#93;</a></sup><sup id="cite_ref-Pearson_20-2" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup> for example, separating the "U-shaped" from the "J-shaped" distributions. The lower boundary line (excess kurtosis + 2 skewness<sup>2</sup> = 0) is produced by skewed "U-shaped" beta distributions with both values of shape parameters α and β close to zero. The upper boundary line (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is produced by extremely skewed distributions with very large values of one of the parameters and very small values of the other parameter. <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> showed<sup id="cite_ref-Pearson_20-3" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup> that this upper boundary line (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is also the intersection with Pearson's distribution III, which has unlimited support in one direction (towards positive infinity), and can be bell-shaped or J-shaped. His son, <a href="/wiki/Egon_Pearson" title="Egon Pearson">Egon Pearson</a>, showed<sup id="cite_ref-Egon_30-1" class="reference"><a href="#cite_note-Egon-30">&#91;30&#93;</a></sup> that the region (in the kurtosis/squared-skewness plane) occupied by the beta distribution (equivalently, Pearson's distribution I) as it approaches this boundary (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is shared with the <a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">noncentral chi-squared distribution</a>. Karl Pearson<sup id="cite_ref-Pearson1895_32-0" class="reference"><a href="#cite_note-Pearson1895-32">&#91;32&#93;</a></sup> (Pearson 1895, pp.&#160;357, 360, 373376) also showed that the gamma distribution is a Pearson type III distribution. Hence this boundary line for Pearson's type III distribution is known as the gamma line. (This can be shown from the fact that the excess kurtosis of the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> is 6/<i>k</i> and the square of the skewness is 4/<i>k</i>, hence (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is identically satisfied by the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a> regardless of the value of the parameter "k"). Pearson later noted that the <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a> is a special case of Pearson's type III and also shares this boundary line (as it is apparent from the fact that for the <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a> the excess kurtosis is 12/<i>k</i> and the square of the skewness is 8/<i>k</i>, hence (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is identically satisfied regardless of the value of the parameter "k"). This is to be expected, since the chi-squared distribution <i>X</i> ~ χ<sup>2</sup>(<i>k</i>) is a special case of the gamma distribution, with parametrization X ~ Γ(k/2, 1/2) where k is a positive integer that specifies the "number of degrees of freedom" of the chi-squared distribution.
</p><p>An example of a beta distribution near the upper boundary (excess kurtosis (3/2) skewness<sup>2</sup> = 0) is given by α = 0.1, β = 1000, for which the ratio (excess kurtosis)/(skewness<sup>2</sup>) = 1.49835 approaches the upper limit of 1.5 from below. An example of a beta distribution near the lower boundary (excess kurtosis + 2 skewness<sup>2</sup> = 0) is given by α= 0.0001, β = 0.1, for which values the expression (excess kurtosis + 2)/(skewness<sup>2</sup>) = 1.01621 approaches the lower limit of 1 from above. In the infinitesimal limit for both α and β approaching zero symmetrically, the excess kurtosis reaches its minimum value at 2. This minimum value occurs at the point at which the lower boundary line intersects the vertical axis (<a href="/wiki/Ordinate" class="mw-redirect" title="Ordinate">ordinate</a>). (However, in Pearson's original chart, the ordinate is kurtosis, instead of excess kurtosis, and it increases downwards rather than upwards).
</p><p>Values for the skewness and excess kurtosis below the lower boundary (excess kurtosis + 2 skewness<sup>2</sup> = 0) cannot occur for any distribution, and hence <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> appropriately called the region below this boundary the "impossible region". The boundary for this "impossible region" is determined by (symmetric or skewed) bimodal "U"-shaped distributions for which the parameters α and β approach zero and hence all the probability density is concentrated at the ends: <i>x</i> = 0, 1 with practically nothing in between them. Since for α ≈ β ≈ 0 the probability density is concentrated at the two ends <i>x</i> = 0 and <i>x</i> = 1, this "impossible boundary" is determined by a <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a>, where the two only possible outcomes occur with respective probabilities <i>p</i> and <i>q</i> = 1<i>p</i>. For cases approaching this limit boundary with symmetry α = β, skewness ≈ 0, excess kurtosis ≈ 2 (this is the lowest excess kurtosis possible for any distribution), and the probabilities are <i>p</i> ≈ <i>q</i> ≈ 1/2. For cases approaching this limit boundary with skewness, excess kurtosis ≈ 2 + skewness<sup>2</sup>, and the probability density is concentrated more at one end than the other end (with practically nothing in between), with probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\tfrac {\beta }{\alpha +\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>p</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle p={\tfrac {\beta }{\alpha +\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bceba26790901da810d62299a9ed4c8199828f47" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; margin-left: -0.089ex; width:8.466ex; height:4.509ex;" alt="p = \tfrac{\beta}{\alpha + \beta}"></span> at the left end <i>x</i> = 0 and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1-p={\tfrac {\alpha }{\alpha +\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>q</mi>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle q=1-p={\tfrac {\alpha }{\alpha +\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af01bdfe4d6efa34624bc5d506a322a33c2018a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:16.547ex; height:3.676ex;" alt="q = 1-p = \tfrac{\alpha}{\alpha + \beta}"></span> at the right end <i>x</i> = 1.
</p>
<h3><span class="mw-headline" id="Symmetry">Symmetry</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=36" title="Edit section: Symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<p>All statements are conditional on α, β &gt; 0
</p>
<ul><li><b>Probability density function</b> <a href="/wiki/Symmetry" title="Symmetry">reflection symmetry</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\alpha ,\beta )=f(1-x;\beta ,\alpha )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle f(x;\alpha ,\beta )=f(1-x;\beta ,\alpha )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d7fb285ac28ac490f522167589070fc9a2ed7" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.711ex; height:2.843ex;" alt="f(x;\alpha,\beta) = f(1-x;\beta,\alpha)"></span></dd></dl></dd></dl>
<ul><li><b>Cumulative distribution function</b> <a href="/wiki/Symmetry" title="Symmetry">reflection symmetry</a> plus unitary <a href="/wiki/Symmetry" title="Symmetry">translation</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;\alpha ,\beta )=I_{x}(\alpha ,\beta )=1-F(1-x;\beta ,\alpha )=1-I_{1-x}(\beta ,\alpha )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>F</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>F</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>I</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle F(x;\alpha ,\beta )=I_{x}(\alpha ,\beta )=1-F(1-x;\beta ,\alpha )=1-I_{1-x}(\beta ,\alpha )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd0b60a23fd363c11d1b5bc7247a2ca23a1ca9b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.656ex; height:2.843ex;" alt="F(x;\alpha,\beta) = I_x(\alpha,\beta) = 1- F(1- x;\beta,\alpha) = 1 - I_{1-x}(\beta,\alpha)"></span></dd></dl></dd></dl>
<ul><li><b>Mode</b> <a href="/wiki/Symmetry" title="Symmetry">reflection symmetry</a> plus unitary <a href="/wiki/Symmetry" title="Symmetry">translation</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {mode} (\mathrm {B} (\alpha ,\beta ))=1-\operatorname {mode} (\mathrm {B} (\beta ,\alpha )),{\text{ if }}\mathrm {B} (\beta ,\alpha )\neq \mathrm {B} (1,1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>mode</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>mode</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2260;<!-- ≠ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {mode} (\mathrm {B} (\alpha ,\beta ))=1-\operatorname {mode} (\mathrm {B} (\beta ,\alpha )),{\text{ if }}\mathrm {B} (\beta ,\alpha )\neq \mathrm {B} (1,1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4026defabbf20db73c3ca78d814097181dad1b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.958ex; height:2.843ex;" alt="\operatorname{mode}(\Beta(\alpha, \beta))= 1-\operatorname{mode}(\Beta(\beta, \alpha)),\text{ if }\Beta(\beta, \alpha)\ne \Beta(1,1)"></span></dd></dl></dd></dl>
<ul><li><b>Median</b> <a href="/wiki/Symmetry" title="Symmetry">reflection symmetry</a> plus unitary <a href="/wiki/Symmetry" title="Symmetry">translation</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {median} (\mathrm {B} (\alpha ,\beta ))=1-\operatorname {median} (\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>median</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>median</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {median} (\mathrm {B} (\alpha ,\beta ))=1-\operatorname {median} (\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19c5fc81a596f9cf061b4d44f522bc1ce338b884" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.062ex; height:2.843ex;" alt="\operatorname{median} (\Beta(\alpha, \beta) )= 1 - \operatorname{median} (\Beta(\beta, \alpha))"></span></dd></dl></dd></dl>
<ul><li><b>Mean</b> <a href="/wiki/Symmetry" title="Symmetry">reflection symmetry</a> plus unitary <a href="/wiki/Symmetry" title="Symmetry">translation</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (\mathrm {B} (\alpha ,\beta ))=1-\mu (\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mu (\mathrm {B} (\alpha ,\beta ))=1-\mu (\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76f30cec5ad799ce3fb2738b63d77239089284d4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.14ex; height:2.843ex;" alt="\mu (\Beta(\alpha, \beta) )= 1 - \mu (\Beta(\beta, \alpha) )"></span></dd></dl></dd></dl>
<ul><li><b>Geometric Means</b> each is individually asymmetric, the following symmetry applies between the geometric mean based on <i>X</i> and the geometric mean based on its <a href="/wiki/Reflection_formula" title="Reflection formula">reflection</a> (1-X)</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{X}(\mathrm {B} (\alpha ,\beta ))=G_{(1-X)}(\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle G_{X}(\mathrm {B} (\alpha ,\beta ))=G_{(1-X)}(\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/366b0b1b88e8457fa0d397caba24b424c707b125" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:31.632ex; height:3.176ex;" alt="G_X (\Beta(\alpha, \beta) )=G_{(1-X)}(\Beta(\beta, \alpha) ) "></span></dd></dl></dd></dl>
<ul><li><b>Harmonic means</b> each is individually asymmetric, the following symmetry applies between the harmonic mean based on <i>X</i> and the harmonic mean based on its <a href="/wiki/Reflection_formula" title="Reflection formula">reflection</a> (1-X)</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{X}(\mathrm {B} (\alpha ,\beta ))=H_{(1-X)}(\mathrm {B} (\beta ,\alpha )){\text{ if }}\alpha ,\beta &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>H</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H_{X}(\mathrm {B} (\alpha ,\beta ))=H_{(1-X)}(\mathrm {B} (\beta ,\alpha )){\text{ if }}\alpha ,\beta &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8a214283870e57900657da51d4c9210e2bf410" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.475ex; height:3.176ex;" alt="H_X (\Beta(\alpha, \beta) )=H_{(1-X)}(\Beta(\beta, \alpha) ) \text{ if } \alpha, \beta &gt; 1 "></span> .</dd></dl></dd></dl>
<ul><li><b>Variance</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} (\mathrm {B} (\alpha ,\beta ))=\operatorname {var} (\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} (\mathrm {B} (\alpha ,\beta ))=\operatorname {var} (\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74a71c71ec7328072c2e21431f3a3400332bb421" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.937ex; height:2.843ex;" alt="\operatorname{var} (\Beta(\alpha, \beta) )=\operatorname{var} (\Beta(\beta, \alpha) )"></span></dd></dl></dd></dl>
<ul><li><b>Geometric variances</b> each is individually asymmetric, the following symmetry applies between the log geometric variance based on X and the log geometric variance based on its <a href="/wiki/Reflection_formula" title="Reflection formula">reflection</a> (1-X)</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(\operatorname {var_{GX}} (\mathrm {B} (\alpha ,\beta )))=\ln(\operatorname {var_{G(1-X)}} (\mathrm {B} (\beta ,\alpha )))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mi mathvariant="normal">X</mi>
</mrow>
</msub>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln(\operatorname {var_{GX}} (\mathrm {B} (\alpha ,\beta )))=\ln(\operatorname {var_{G(1-X)}} (\mathrm {B} (\beta ,\alpha )))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/086b0dfe60fe76c89f7b226e5961972d53715098" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:43.593ex; height:3.176ex;" alt="\ln(\operatorname{var_{GX}} (\Beta(\alpha, \beta))) = \ln(\operatorname{var_{G(1-X)}}(\Beta(\beta, \alpha))) "></span></dd></dl></dd></dl>
<ul><li><b>Geometric covariance</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">o</mi>
<msub>
<mi mathvariant="normal">v</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mi mathvariant="normal">X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">o</mi>
<msub>
<mi mathvariant="normal">v</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mi mathvariant="normal">X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521377d0ede253eea650048e4e98ad762eb8d514" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:47.019ex; height:3.176ex;" alt="{\displaystyle \ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\alpha ,\beta ))=\ln \operatorname {cov_{GX,(1-X)}} (\mathrm {B} (\beta ,\alpha ))}"></span></dd></dl></dd></dl>
<ul><li><b>Mean <a href="/wiki/Absolute_deviation" class="mw-redirect" title="Absolute deviation">absolute deviation</a> around the mean</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [|X-E[X]|](\mathrm {B} (\alpha ,\beta ))=\operatorname {E} [|X-E[X]|](\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>&#x2212;<!-- --></mo>
<mi>E</mi>
<mo stretchy="false">[</mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mo stretchy="false">]</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [|X-E[X]|](\mathrm {B} (\alpha ,\beta ))=\operatorname {E} [|X-E[X]|](\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83468b7365d9095b07e04bfbb5c9cff50c64ea2d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.414ex; height:2.843ex;" alt="\operatorname{E}[|X - E[X]| ] (\Beta(\alpha, \beta))=\operatorname{E}[| X - E[X]|] (\Beta(\beta, \alpha))"></span></dd></dl></dd></dl>
<ul><li><b>Skewness</b> <a href="/wiki/Symmetry_(mathematics)" class="mw-redirect" title="Symmetry (mathematics)">skew-symmetry</a></li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {skewness} (\mathrm {B} (\alpha ,\beta ))=-\operatorname {skewness} (\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>skewness</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>skewness</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {skewness} (\mathrm {B} (\alpha ,\beta ))=-\operatorname {skewness} (\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/748ffd21174eaca16caadef5d2a418721c9e433b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.552ex; height:2.843ex;" alt="\operatorname{skewness} (\Beta(\alpha, \beta) )= - \operatorname{ skewness} (\Beta(\beta, \alpha) )"></span></dd></dl></dd></dl>
<ul><li><b>Excess kurtosis</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}(\mathrm {B} (\alpha ,\beta ))={\text{excess kurtosis}}(\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}(\mathrm {B} (\alpha ,\beta ))={\text{excess kurtosis}}(\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8fa5ae5e41c84ac33b9681ecef49133ae20ff3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.766ex; height:2.843ex;" alt="\text{excess kurtosis} (\Beta(\alpha, \beta) )= \text{excess kurtosis} (\Beta(\beta, \alpha) )"></span></dd></dl></dd></dl>
<ul><li><b>Characteristic function</b> symmetry of <a href="/wiki/Real_part" class="mw-redirect" title="Real part">Real part</a> (with respect to the origin of variable "t")</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Re}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]={\text{Re}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Re</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>Re</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x2212;<!-- --></mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{Re}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]={\text{Re}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55bbddff6ec53eb39eccc603618459ba36e10ad2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.52ex; height:2.843ex;" alt=" \text{Re} [{}_1F_1(\alpha; \alpha+\beta; it) ] = \text{Re} [ {}_1F_1(\alpha; \alpha+\beta; - it)] "></span></dd></dl></dd></dl>
<ul><li><b>Characteristic function</b> <a href="/wiki/Symmetry_(mathematics)" class="mw-redirect" title="Symmetry (mathematics)">skew-symmetry</a> of <a href="/wiki/Imaginary_part" class="mw-redirect" title="Imaginary part">Imaginary part</a> (with respect to the origin of variable "t")</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Im}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]=-{\text{Im}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Im</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>Im</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x2212;<!-- --></mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{Im}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]=-{\text{Im}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebb682c9915a60ef8d982340de042127ab262a0f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.393ex; height:2.843ex;" alt=" \text{Im} [{}_1F_1(\alpha; \alpha+\beta; it) ] = - \text{Im} [ {}_1F_1(\alpha; \alpha+\beta; - it) ] "></span></dd></dl></dd></dl>
<ul><li><b>Characteristic function</b> symmetry of <a href="/wiki/Absolute_value" title="Absolute value">Absolute value</a> (with respect to the origin of variable "t")</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Abs}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]={\text{Abs}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>Abs</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>Abs</mtext>
</mrow>
<mo stretchy="false">[</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<msub>
<mi>F</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>;</mo>
<mo>&#x2212;<!-- --></mo>
<mi>i</mi>
<mi>t</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{Abs}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;it)]={\text{Abs}}[{}_{1}F_{1}(\alpha ;\alpha +\beta ;-it)]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08c1c15ff4c63020b66d2404d439514d965946d0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.938ex; height:2.843ex;" alt=" \text{Abs} [ {}_1F_1(\alpha; \alpha+\beta; it) ] = \text{Abs} [ {}_1F_1(\alpha; \alpha+\beta; - it) ] "></span></dd></dl></dd></dl>
<ul><li><b>Differential entropy</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(\mathrm {B} (\alpha ,\beta ))=h(\mathrm {B} (\beta ,\alpha ))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>h</mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>h</mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle h(\mathrm {B} (\alpha ,\beta ))=h(\mathrm {B} (\beta ,\alpha ))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4d4f6513fd16af109112a3b87590558cddb1d29" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.012ex; height:2.843ex;" alt="h(\Beta(\alpha, \beta) )= h(\Beta(\beta, \alpha) )"></span></dd></dl></dd></dl>
<ul><li><b>Relative Entropy (also called <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">Kullback&#8211;Leibler divergence</a>)</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}){\text{, for (skewed) }}\alpha \neq \beta }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>h</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>h</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>, for (skewed)&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2260;<!-- ≠ --></mo>
<mi>&#x03B2;<!-- β --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}){\text{, for (skewed) }}\alpha \neq \beta }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11bcb8326d3a2c9ce2551f4bf5975caed3e682b4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:69.13ex; height:2.843ex;" alt="{\displaystyle D_{\mathrm {KL} }(X_{1}||X_{2})=D_{\mathrm {KL} }(X_{2}||X_{1}),{\text{ if }}h(X_{1})=h(X_{2}){\text{, for (skewed) }}\alpha \neq \beta }"></span></dd></dl></dd></dl>
<ul><li><b>Fisher information matrix</b> symmetry</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{i,j}={\mathcal {I}}_{j,i}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>j</mi>
<mo>,</mo>
<mi>i</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{i,j}={\mathcal {I}}_{j,i}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af6b1dc4d38273cf6dc8499ce6411044ec63ab18" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:9.57ex; height:2.843ex;" alt="{\mathcal{I}}_{i, j} = {\mathcal{I}}_{j, i}"></span></dd></dl></dd></dl>
<h3><span class="mw-headline" id="Geometry_of_the_probability_density_function">Geometry of the probability density function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=37" title="Edit section: Geometry of the probability density function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Inflection_points">Inflection points</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=38" title="Edit section: Inflection points"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg/220px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg/330px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg/440px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptl_view_-_J._Rodal.jpg 2x" data-file-width="1551" data-file-height="1072" /></a><figcaption>Inflection point location versus α and β showing regions with one inflection point</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg/220px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg/330px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg/440px-Inflexion_points_Beta_Distribution_alpha_and_beta_ranging_from_0_to_5_large_ptr_view_-_J._Rodal.jpg 2x" data-file-width="1551" data-file-height="1072" /></a><figcaption>Inflection point location versus α and β showing region with two inflection points</figcaption></figure>
<p>For certain values of the shape parameters α and β, the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> has <a href="/wiki/Inflection_points" class="mw-redirect" title="Inflection points">inflection points</a>, at which the <a href="/wiki/Curvature" title="Curvature">curvature</a> changes sign. The position of these inflection points can be useful as a measure of the <a href="/wiki/Statistical_dispersion" title="Statistical dispersion">dispersion</a> or spread of the distribution.
</p><p>Defining the following quantity:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa ={\frac {\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \kappa ={\frac {\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a25618bff371a2cacfa4d37cc75a397fc79eda3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.187ex; height:9.509ex;" alt="\kappa =\frac{\sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl>
<p>Points of inflection occur,<sup id="cite_ref-JKB_1-15" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-Wadsworth_7-1" class="reference"><a href="#cite_note-Wadsworth-7">&#91;7&#93;</a></sup><sup id="cite_ref-Handbook_of_Beta_Distribution_8-5" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup><sup id="cite_ref-Panik_19-1" class="reference"><a href="#cite_note-Panik-19">&#91;19&#93;</a></sup> depending on the value of the shape parameters α and β, as follows:
</p>
<ul><li>(α &gt; 2, β &gt; 2) The distribution is bell-shaped (symmetric for α = β and skewed otherwise), with <b>two inflection points</b>, equidistant from the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\text{mode}}\pm \kappa ={\frac {\alpha -1\pm {\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo>&#x00B1;<!-- ± --></mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>&#x00B1;<!-- ± --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\text{mode}}\pm \kappa ={\frac {\alpha -1\pm {\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/824e9ad23c78338bd281a68fa12cd6488803800a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.21ex; height:9.509ex;" alt="x = \text{mode} \pm \kappa = \frac{\alpha -1 \pm \sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl></dd></dl>
<ul><li>(α = 2, β &gt; 2) The distribution is unimodal, positively skewed, right-tailed, with <b>one inflection point</b>, located to the right of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\text{mode}}+\kappa ={\frac {2}{\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo>+</mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>2</mn>
<mi>&#x03B2;<!-- β --></mi>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\text{mode}}+\kappa ={\frac {2}{\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/620d8f2d2763e7caf8633301e4142d00a754e60a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.297ex; height:5.676ex;" alt="x =\text{mode} + \kappa = \frac{2}{\beta}"></span></dd></dl></dd></dl>
<ul><li>(α &gt; 2, β = 2) The distribution is unimodal, negatively skewed, left-tailed, with <b>one inflection point</b>, located to the left of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\text{mode}}-\kappa =1-{\frac {2}{\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\text{mode}}-\kappa =1-{\frac {2}{\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c3330dc70173881e3a955fb2d48c7531ce4501c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.456ex; height:5.176ex;" alt="x = \text{mode} - \kappa = 1 - \frac{2}{\alpha}"></span></dd></dl></dd></dl>
<ul><li>(1 &lt; α &lt; 2, β &gt; 2, α+β&gt;2) The distribution is unimodal, positively skewed, right-tailed, with <b>one inflection point</b>, located to the right of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\text{mode}}+\kappa ={\frac {\alpha -1+{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo>+</mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\text{mode}}+\kappa ={\frac {\alpha -1+{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6f4879f21644e05c71610250aae2fdf73b14418" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.21ex; height:9.509ex;" alt="x =\text{mode} + \kappa = \frac{\alpha -1 +\sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl></dd></dl>
<ul><li>(0 &lt; α &lt; 1, 1 &lt; β &lt; 2) The distribution has a mode at the left end <i>x</i> = 0 and it is positively skewed, right-tailed. There is <b>one inflection point</b>, located to the right of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {\alpha -1+{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\frac {\alpha -1+{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c27732cec33ec3f248a4a2f1ef607aef29e374a1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.509ex; height:9.509ex;" alt="x = \frac{\alpha -1 +\sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl></dd></dl>
<ul><li>(α &gt; 2, 1 &lt; β &lt; 2) The distribution is unimodal negatively skewed, left-tailed, with <b>one inflection point</b>, located to the left of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\text{mode}}-\kappa ={\frac {\alpha -1-{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode</mtext>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BA;<!-- κ --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\text{mode}}-\kappa ={\frac {\alpha -1-{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/711b8cb900645ea1295fc899aa63bdd0648315d4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.21ex; height:9.509ex;" alt="x =\text{mode} - \kappa = \frac{\alpha -1 -\sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl></dd></dl>
<ul><li>(1 &lt; α &lt; 2, 0 &lt; β &lt; 1) The distribution has a mode at the right end <i>x</i>=1 and it is negatively skewed, left-tailed. There is <b>one inflection point</b>, located to the left of the mode:</li></ul>
<dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {\alpha -1-{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>x</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mrow>
</mfrac>
</msqrt>
</mrow>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x={\frac {\alpha -1-{\sqrt {\frac {(\alpha -1)(\beta -1)}{\alpha +\beta -3}}}}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9005b2b06e722f6f78c8c0ace994575a519d65" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.509ex; height:9.509ex;" alt="x = \frac{\alpha -1 -\sqrt{\frac{(\alpha-1)(\beta-1)}{\alpha+\beta-3}}}{\alpha+\beta-2}"></span></dd></dl></dd></dl>
<p>There are no inflection points in the remaining (symmetric and skewed) regions: U-shaped: (α, β &lt; 1) upside-down-U-shaped: (1 &lt; α &lt; 2, 1 &lt; β &lt; 2), reverse-J-shaped (α &lt; 1, β &gt; 2) or J-shaped: (α &gt; 2, β &lt; 1)
</p><p>The accompanying plots show the inflection point locations (shown vertically, ranging from 0 to 1) versus α and β (the horizontal axes ranging from 0 to 5). There are large cuts at surfaces intersecting the lines α = 1, β = 1, α = 2, and β = 2 because at these values the beta distribution change from 2 modes, to 1 mode to no mode.
</p>
<h4><span class="mw-headline" id="Shapes">Shapes</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=39" title="Edit section: Shapes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg/220px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg" decoding="async" width="220" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg/330px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg/440px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_30_-_J._Rodal.jpg 2x" data-file-width="1502" data-file-height="1082" /></a><figcaption>PDF for symmetric beta distribution vs. <i>x</i> and <i>α</i>&#160;=&#160;<i>β</i> from 0 to 30</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg/220px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg" decoding="async" width="220" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg/330px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg/440px-PDF_for_symmetric_beta_distribution_vs._x_and_alpha%3Dbeta_from_0_to_2_-_J._Rodal.jpg 2x" data-file-width="1532" data-file-height="1102" /></a><figcaption>PDF for symmetric beta distribution vs. x and <i>α</i>&#160;=&#160;<i>β</i> from 0 to 2</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg/220px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg/330px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg/440px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_2.5_alpha_from_0_to_9_-_J._Rodal.jpg 2x" data-file-width="1703" data-file-height="1166" /></a><figcaption>PDF for skewed beta distribution vs. <i>x</i> and <i>β</i>&#160;=&#160;2.5<i>α</i> from 0 to 9</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg/220px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg/330px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg/440px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_5.5_alpha_from_0_to_9_-_J._Rodal.jpg 2x" data-file-width="1647" data-file-height="1129" /></a><figcaption>PDF for skewed beta distribution vs. x and <i>β</i>&#160;=&#160;5.5<i>α</i> from 0 to 9</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg/220px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg" decoding="async" width="220" height="142" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg/330px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg/440px-PDF_for_skewed_beta_distribution_vs._x_and_beta%3D_8_alpha_from_0_to_10_-_J._Rodal.jpg 2x" data-file-width="1613" data-file-height="1042" /></a><figcaption>PDF for skewed beta distribution vs. x and <i>β</i>&#160;=&#160;8<i>α</i> from 0 to 10</figcaption></figure>
<p>The beta density function can take a wide variety of different shapes depending on the values of the two parameters <i>α</i> and <i>β</i>. The ability of the beta distribution to take this great diversity of shapes (using only two parameters) is partly responsible for finding wide application for modeling actual measurements:
</p>
<h5><span id="Symmetric_.28.CE.B1_.3D_.CE.B2.29"></span><span class="mw-headline" id="Symmetric_(α_=_β)">Symmetric (<i>α</i> = <i>β</i>)</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=40" title="Edit section: Symmetric (α = β)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<ul><li>the density function is <a href="/wiki/Symmetry" title="Symmetry">symmetric</a> about 1/2 (blue &amp; teal plots).</li>
<li>median = mean = 1/2.</li>
<li>skewness = 0.</li>
<li>variance = 1/(4(2α + 1))</li>
<li><b>α = β &lt; 1</b>
<ul><li>U-shaped (blue plot).</li>
<li>bimodal: left mode = 0, right mode =1, anti-mode = 1/2</li>
<li>1/12 &lt; var(<i>X</i>) &lt; 1/4<sup id="cite_ref-JKB_1-16" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup></li>
<li>2 &lt; excess kurtosis(<i>X</i>) &lt; 6/5</li>
<li>α = β = 1/2 is the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>
<ul><li>var(<i>X</i>) = 1/8</li>
<li>excess kurtosis(<i>X</i>) = 3/2</li>
<li>CF = Rinc (t) <sup id="cite_ref-33" class="reference"><a href="#cite_note-33">&#91;33&#93;</a></sup></li></ul></li>
<li>α = β → 0 is a 2-point <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> with equal probability 1/2 at each <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> end <i>x</i> = 0 and <i>x</i> = 1 and zero probability everywhere else. A coin toss: one face of the coin being <i>x</i> = 0 and the other face being <i>x</i> = 1.
<ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\alpha =\beta \to 0}\operatorname {var} (X)={\tfrac {1}{4}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{\alpha =\beta \to 0}\operatorname {var} (X)={\tfrac {1}{4}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a318e9812e5bcddf9f90e080e7c29f2fdbbf3492" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.972ex; height:4.676ex;" alt=" \lim_{\alpha = \beta \to 0} \operatorname{var}(X) = \tfrac{1}{4} "></span></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\alpha =\beta \to 0}\operatorname {excess\ kurtosis} (X)=-2}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">e</mi>
<mi mathvariant="normal">x</mi>
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">e</mi>
<mi mathvariant="normal">s</mi>
<mi mathvariant="normal">s</mi>
<mtext>&#xA0;</mtext>
<mi mathvariant="normal">k</mi>
<mi mathvariant="normal">u</mi>
<mi mathvariant="normal">r</mi>
<mi mathvariant="normal">t</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">s</mi>
<mi mathvariant="normal">i</mi>
<mi mathvariant="normal">s</mi>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{\alpha =\beta \to 0}\operatorname {excess\ kurtosis} (X)=-2}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7faf8f6752129fa96869d74fa7998970f17d06f4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.699ex; height:4.343ex;" alt=" \lim_{\alpha = \beta \to 0} \operatorname{excess \ kurtosis}(X) = - 2"></span> a lower value than this is impossible for any distribution to reach.</li>
<li>The <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> approaches a <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">minimum</a> value of −∞</li></ul></li></ul></li>
<li><b>α = β = 1</b>
<ul><li>the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform [0, 1] distribution</a></li>
<li>no mode</li>
<li>var(<i>X</i>) = 1/12</li>
<li>excess kurtosis(<i>X</i>) = 6/5</li>
<li>The (negative anywhere else) <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> reaches its <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">maximum</a> value of zero</li>
<li>CF = Sinc (t)</li></ul></li>
<li><b><i>α</i> = <i>β</i> &gt; 1</b>
<ul><li>symmetric <a href="/wiki/Unimodal" class="mw-redirect" title="Unimodal">unimodal</a></li>
<li>mode = 1/2.</li>
<li>0 &lt; var(<i>X</i>) &lt; 1/12<sup id="cite_ref-JKB_1-17" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup></li>
<li>6/5 &lt; excess kurtosis(<i>X</i>) &lt; 0</li>
<li><i>α</i> = <i>β</i> = 3/2 is a semi-elliptic [0, 1] distribution, see: <a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle distribution</a><sup id="cite_ref-34" class="reference"><a href="#cite_note-34">&#91;34&#93;</a></sup>
<ul><li>var(<i>X</i>) = 1/16.</li>
<li>excess kurtosis(<i>X</i>) = 1</li>
<li>CF = 2 Jinc (t)</li></ul></li>
<li><i>α</i> = <i>β</i> = 2 is the parabolic [0, 1] distribution
<ul><li>var(<i>X</i>) = 1/20</li>
<li>excess kurtosis(<i>X</i>) = 6/7</li>
<li>CF = 3 Tinc (t) <sup id="cite_ref-35" class="reference"><a href="#cite_note-35">&#91;35&#93;</a></sup></li></ul></li>
<li><i>α</i> = <i>β</i> &gt; 2 is bell-shaped, with <a href="/wiki/Inflection_point" title="Inflection point">inflection points</a> located to either side of the mode
<ul><li>0 &lt; var(<i>X</i>) &lt; 1/20</li>
<li>6/7 &lt; excess kurtosis(<i>X</i>) &lt; 0</li></ul></li>
<li><i>α</i> = <i>β</i> → ∞ is a 1-point <a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate distribution</a> with a <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> spike at the midpoint <i>x</i> = 1/2 with probability 1, and zero probability everywhere else. There is 100% probability (absolute certainty) concentrated at the single point <i>x</i> = 1/2.
<ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\alpha =\beta \to \infty }\operatorname {var} (X)=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{\alpha =\beta \to \infty }\operatorname {var} (X)=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64b7560056b21989a42e3aae0f2686a63c5d9115" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.297ex; height:4.343ex;" alt=" \lim_{\alpha = \beta \to \infty} \operatorname{var}(X) = 0 "></span></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\alpha =\beta \to \infty }\operatorname {excess\ kurtosis} (X)=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">e</mi>
<mi mathvariant="normal">x</mi>
<mi mathvariant="normal">c</mi>
<mi mathvariant="normal">e</mi>
<mi mathvariant="normal">s</mi>
<mi mathvariant="normal">s</mi>
<mtext>&#xA0;</mtext>
<mi mathvariant="normal">k</mi>
<mi mathvariant="normal">u</mi>
<mi mathvariant="normal">r</mi>
<mi mathvariant="normal">t</mi>
<mi mathvariant="normal">o</mi>
<mi mathvariant="normal">s</mi>
<mi mathvariant="normal">i</mi>
<mi mathvariant="normal">s</mi>
</mrow>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{\alpha =\beta \to \infty }\operatorname {excess\ kurtosis} (X)=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f02e97f6ca6d3c46ed639e5b03e51c4262591ab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.712ex; height:4.343ex;" alt=" \lim_{\alpha = \beta \to \infty} \operatorname{excess \ kurtosis}(X) = 0"></span></li>
<li>The <a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">differential entropy</a> approaches a <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">minimum</a> value of −∞</li></ul></li></ul></li></ul>
<h5><span id="Skewed_.28.CE.B1_.E2.89.A0_.CE.B2.29"></span><span class="mw-headline" id="Skewed_(α_≠_β)">Skewed (<i>α</i> ≠ <i>β</i>)</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=41" title="Edit section: Skewed (α ≠ β)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>The density function is <a href="/wiki/Skewness" title="Skewness">skewed</a>. An interchange of parameter values yields the <a href="/wiki/Mirror_image" title="Mirror image">mirror image</a> (the reverse) of the initial curve, some more specific cases:
</p>
<ul><li><b><i>α</i> &lt; 1, <i>β</i> &lt; 1</b>
<ul><li>U-shaped</li>
<li>Positive skew for α &lt; β, negative skew for α &gt; β.</li>
<li>bimodal: left mode = 0, right mode = 1, anti-mode = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\alpha -1}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {\alpha -1}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1632b6874ce03bd0d75001d5816183986685c998" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:6.209ex; height:4.176ex;" alt="\tfrac{\alpha-1}{\alpha + \beta-2} "></span></li>
<li>0 &lt; median &lt; 1.</li>
<li>0 &lt; var(<i>X</i>) &lt; 1/4</li></ul></li>
<li><b>α &gt; 1, β &gt; 1</b>
<ul><li><a href="/wiki/Unimodal" class="mw-redirect" title="Unimodal">unimodal</a> (magenta &amp; cyan plots),</li>
<li>Positive skew for α &lt; β, negative skew for α &gt; β.</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{mode }}={\tfrac {\alpha -1}{\alpha +\beta -2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>mode&#xA0;</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{mode }}={\tfrac {\alpha -1}{\alpha +\beta -2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ad1c5891c8781b906dad44947edf7888e184b6d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:15.311ex; height:4.176ex;" alt="\text{mode }= \tfrac{\alpha-1}{\alpha + \beta-2} "></span></li>
<li>0 &lt; median &lt; 1</li>
<li>0 &lt; var(<i>X</i>) &lt; 1/12</li></ul></li>
<li><b>α &lt; 1, β ≥ 1</b>
<ul><li>reverse J-shaped with a right tail,</li>
<li>positively skewed,</li>
<li>strictly decreasing, <a href="/wiki/Convex_function" title="Convex function">convex</a></li>
<li>mode = 0</li>
<li>0 &lt; median &lt; 1/2.</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\operatorname {var} (X)&lt;{\tfrac {-11+5{\sqrt {5}}}{2}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>0</mn>
<mo>&lt;</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>11</mn>
<mo>+</mo>
<mn>5</mn>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 0&lt;\operatorname {var} (X)&lt;{\tfrac {-11+5{\sqrt {5}}}{2}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cadd8b11fdd42150ace45b7773d08ecc8e8fe74" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.147ex; height:4.176ex;" alt="0 &lt; \operatorname{var}(X) &lt; \tfrac{-11+5 \sqrt{5}}{2}, "></span> (maximum variance occurs for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ={\tfrac {-1+{\sqrt {5}}}{2}},\beta =1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha ={\tfrac {-1+{\sqrt {5}}}{2}},\beta =1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f410ad34dcc819db94aa295c039855a4f8d36ed3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.619ex; height:4.176ex;" alt="\alpha=\tfrac{-1+\sqrt{5}}{2}, \beta=1"></span>, or α = <b>Φ</b> the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio conjugate</a>)</li></ul></li>
<li><b>α ≥ 1, β &lt; 1</b>
<ul><li>J-shaped with a left tail,</li>
<li>negatively skewed,</li>
<li>strictly increasing, <a href="/wiki/Convex_function" title="Convex function">convex</a></li>
<li>mode = 1</li>
<li>1/2 &lt; median &lt; 1</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\operatorname {var} (X)&lt;{\tfrac {-11+5{\sqrt {5}}}{2}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>0</mn>
<mo>&lt;</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>11</mn>
<mo>+</mo>
<mn>5</mn>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 0&lt;\operatorname {var} (X)&lt;{\tfrac {-11+5{\sqrt {5}}}{2}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cadd8b11fdd42150ace45b7773d08ecc8e8fe74" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.147ex; height:4.176ex;" alt="0 &lt; \operatorname{var}(X) &lt; \tfrac{-11+5 \sqrt{5}}{2},"></span> (maximum variance occurs for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =1,\beta ={\tfrac {-1+{\sqrt {5}}}{2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>1</mn>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>5</mn>
</msqrt>
</mrow>
</mrow>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =1,\beta ={\tfrac {-1+{\sqrt {5}}}{2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a90d376a97ae58c5b62c070f3a64797617cecc6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.619ex; height:4.176ex;" alt="\alpha=1, \beta=\tfrac{-1+\sqrt{5}}{2}"></span>, or β = <b>Φ</b> the <a href="/wiki/Golden_ratio" title="Golden ratio">golden ratio conjugate</a>)</li></ul></li>
<li><b>α = 1, β &gt; 1</b>
<ul><li>positively skewed,</li>
<li>strictly decreasing (red plot),</li>
<li>a reversed (mirror-image) power function [0,1] distribution</li>
<li>mean = 1 / (β + 1)</li>
<li>median = 1 - 1/2<sup>1/β</sup></li>
<li>mode = 0</li>
<li>α = 1, 1 &lt; β &lt; 2
<ul><li><a href="/wiki/Concave_function" title="Concave function">concave</a></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-{\tfrac {1}{\sqrt {2}}}&lt;{\text{median}}&lt;{\tfrac {1}{2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 1-{\tfrac {1}{\sqrt {2}}}&lt;{\text{median}}&lt;{\tfrac {1}{2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b55b97f0824d4ceb525a8eb431b1edc14491785e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.247ex; height:4.176ex;" alt="1-\tfrac{1}{\sqrt{2}}&lt; \text{median} &lt; \tfrac{1}{2}"></span></li>
<li>1/18 &lt; var(<i>X</i>) &lt; 1/12.</li></ul></li>
<li>α = 1, β = 2
<ul><li>a straight line with slope 2, the right-<a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a> with right angle at the left end, at <i>x</i> = 0</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{median}}=1-{\tfrac {1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{median}}=1-{\tfrac {1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c4cfb877754e9c488dd91417d658cd6acdcd17" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.491ex; height:4.176ex;" alt="\text{median}=1-\tfrac {1}{\sqrt{2}}"></span></li>
<li>var(<i>X</i>) = 1/18</li></ul></li>
<li>α = 1, β &gt; 2
<ul><li>reverse J-shaped with a right tail,</li>
<li><a href="/wiki/Convex_function" title="Convex function">convex</a></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;{\text{median}}&lt;1-{\tfrac {1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>0</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&lt;</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 0&lt;{\text{median}}&lt;1-{\tfrac {1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a83299b14cd568ea16972ae4e5ba0ed49e9db9e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.752ex; height:4.176ex;" alt="0 &lt; \text{median} &lt; 1-\tfrac{1}{\sqrt{2}}"></span></li>
<li>0 &lt; var(<i>X</i>) &lt; 1/18</li></ul></li></ul></li>
<li><b>α &gt; 1, β = 1</b>
<ul><li>negatively skewed,</li>
<li>strictly increasing (green plot),</li>
<li>the power function [0, 1] distribution<sup id="cite_ref-Handbook_of_Beta_Distribution_8-6" class="reference"><a href="#cite_note-Handbook_of_Beta_Distribution-8">&#91;8&#93;</a></sup></li>
<li>mean = α / (α + 1)</li>
<li>median = 1/2<sup>1/α </sup></li>
<li>mode = 1</li>
<li>2 &gt; α &gt; 1, β = 1
<ul><li><a href="/wiki/Concave_function" title="Concave function">concave</a></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}&lt;{\text{median}}&lt;{\tfrac {1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{2}}&lt;{\text{median}}&lt;{\tfrac {1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c545efc34084ab06a0e012554c5d733c23388060" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.245ex; height:4.176ex;" alt="\tfrac{1}{2} &lt; \text{median} &lt; \tfrac{1}{\sqrt{2}}"></span></li>
<li>1/18 &lt; var(<i>X</i>) &lt; 1/12</li></ul></li>
<li>α = 2, β = 1
<ul><li>a straight line with slope +2, the right-<a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a> with right angle at the right end, at <i>x</i> = 1</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{median}}={\tfrac {1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{median}}={\tfrac {1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfd31bd7dc82f3d5caa0eb45b3b3f360f32dbf14" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:13.488ex; height:4.176ex;" alt="\text{median}=\tfrac {1}{\sqrt{2}}"></span></li>
<li>var(<i>X</i>) = 1/18</li></ul></li>
<li>α &gt; 2, β = 1
<ul><li>J-shaped with a left tail, <a href="/wiki/Convex_function" title="Convex function">convex</a></li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{\sqrt {2}}}&lt;{\text{median}}&lt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mstyle>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>median</mtext>
</mrow>
<mo>&lt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{\sqrt {2}}}&lt;{\text{median}}&lt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80e97699a1620336c7267276f96efbdafc13ba64" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.749ex; height:4.176ex;" alt="\tfrac{1}{\sqrt{2}} &lt; \text{median} &lt; 1"></span></li>
<li>0 &lt; var(<i>X</i>) &lt; 1/18</li></ul></li></ul></li></ul>
<h2><span class="mw-headline" id="Related_distributions">Related distributions</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=42" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<h3><span class="mw-headline" id="Transformations">Transformations</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=43" title="Edit section: Transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<ul><li>If <i>X</i> ~ Beta(<i>α</i>, <i>β</i>) then 1 <i>X</i> ~ Beta(<i>β</i>, <i>α</i>) <a href="/wiki/Mirror_image" title="Mirror image">mirror-image</a> symmetry</li>
<li>If <i>X</i> ~ Beta(<i>α</i>, <i>β</i>) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {X}{1-X}}\sim {\beta '}(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {X}{1-X}}\sim {\beta '}(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4729760d819d7894ca35e889bc9192ad601f5fd1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.12ex; height:3.676ex;" alt="{\displaystyle {\tfrac {X}{1-X}}\sim {\beta &#039;}(\alpha ,\beta )}"></span>. The <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a>, also called "beta distribution of the second kind".</li>
<li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\text{Beta}}(\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>Beta</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim {\text{Beta}}(\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f5f5824479195eafef981fab9a5b7722002d15" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.486ex; height:2.843ex;" alt="{\displaystyle X\sim {\text{Beta}}(\alpha ,\beta )}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\log {\frac {X}{1-X}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Y</mi>
<mo>=</mo>
<mi>log</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Y=\log {\frac {X}{1-X}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45a2407291080b9e048ea5234c98581218a8aa46" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.05ex; height:5.343ex;" alt="{\displaystyle Y=\log {\frac {X}{1-X}}}"></span> has a <a href="/wiki/Generalized_logistic_distribution" title="Generalized logistic distribution">generalized logistic distribution</a>, with density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sigma (y)^{\alpha }\sigma (-y)^{\beta }}{B(\alpha ,\beta )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03C3;<!-- σ --></mi>
<mo stretchy="false">(</mo>
<mi>y</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msup>
<mi>&#x03C3;<!-- σ --></mi>
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msup>
</mrow>
<mrow>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\sigma (y)^{\alpha }\sigma (-y)^{\beta }}{B(\alpha ,\beta )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c9e5c0ca7d0c451eeb1d6de5e6756a2ea1044c5" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.691ex; height:6.676ex;" alt="{\displaystyle {\frac {\sigma (y)^{\alpha }\sigma (-y)^{\beta }}{B(\alpha ,\beta )}}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C3;<!-- σ --></mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="\sigma "></span> is the <a href="/wiki/Logistic_sigmoid" class="mw-redirect" title="Logistic sigmoid">logistic sigmoid</a>.</li>
<li>If <i>X</i> ~ Beta(<i>α</i>, <i>β</i>) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{X}}-1\sim {\beta '}(\beta ,\alpha )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mstyle>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2032;</mo>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{X}}-1\sim {\beta '}(\beta ,\alpha )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/589767ba92a975c90e9ec4542a6caddacdd2ee04" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.022ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{X}}-1\sim {\beta &#039;}(\beta ,\alpha )}"></span>.</li>
<li>If <i>X</i> ~ Beta(<i>n</i>/2, <i>m</i>/2) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {mX}{n(1-X)}}\sim F(n,m)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mi>m</mi>
<mi>X</mi>
</mrow>
<mrow>
<mi>n</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mi>F</mi>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>,</mo>
<mi>m</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {mX}{n(1-X)}}\sim F(n,m)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/457612b34711860ab2e561e98784b94be23068fc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.72ex; height:4.343ex;" alt="\tfrac{mX}{n(1-X)} \sim F(n,m)"></span> (assuming <i>n</i> &gt; 0 and <i>m</i> &gt; 0), the <a href="/wiki/F-distribution" title="F-distribution">FisherSnedecor F distribution</a>.</li>
<li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Beta} \left(1+\lambda {\tfrac {m-\min }{\max -\min }},1+\lambda {\tfrac {\max -m}{\max -\min }}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BB;<!-- λ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mi>m</mi>
<mo>&#x2212;<!-- --></mo>
<mo movablelimits="true" form="prefix">min</mo>
</mrow>
<mrow>
<mo movablelimits="true" form="prefix">max</mo>
<mo>&#x2212;<!-- --></mo>
<mo movablelimits="true" form="prefix">min</mo>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BB;<!-- λ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mo movablelimits="true" form="prefix">max</mo>
<mo>&#x2212;<!-- --></mo>
<mi>m</mi>
</mrow>
<mrow>
<mo movablelimits="true" form="prefix">max</mo>
<mo>&#x2212;<!-- --></mo>
<mo movablelimits="true" form="prefix">min</mo>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Beta} \left(1+\lambda {\tfrac {m-\min }{\max -\min }},1+\lambda {\tfrac {\max -m}{\max -\min }}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf1ef11aa6ae7b24fc6add2ad05667a5ece7f8b0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:41.725ex; height:4.843ex;" alt="{\displaystyle X\sim \operatorname {Beta} \left(1+\lambda {\tfrac {m-\min }{\max -\min }},1+\lambda {\tfrac {\max -m}{\max -\min }}\right)}"></span> then min + <i>X</i>(max min) ~ PERT(min, max, <i>m</i>, <i>λ</i>) where <i>PERT</i> denotes a <a href="/wiki/PERT_distribution" title="PERT distribution">PERT distribution</a> used in <a href="/wiki/PERT" class="mw-redirect" title="PERT">PERT</a> analysis, and <i>m</i>=most likely value.<sup id="cite_ref-NewPERT_36-0" class="reference"><a href="#cite_note-NewPERT-36">&#91;36&#93;</a></sup> Traditionally<sup id="cite_ref-Malcolm_37-0" class="reference"><a href="#cite_note-Malcolm-37">&#91;37&#93;</a></sup> <i>λ</i> = 4 in PERT analysis.</li>
<li>If <i>X</i> ~ Beta(1, <i>β</i>) then <i>X</i> ~ <a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy distribution</a> with parameters (1, <i>β</i>)</li>
<li>If <i>X</i> ~ Beta(<i>α</i>, 1) then <i>X</i> ~ <a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy distribution</a> with parameters (<i>α</i>, 1)</li>
<li>If <i>X</i> ~ Beta(<i>α</i>, 1) then ln(<i>X</i>) ~ Exponential(<i>α</i>)</li></ul>
<h3><span class="mw-headline" id="Special_and_limiting_cases">Special and limiting cases</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=44" title="Edit section: Special and limiting cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Random_Walk_example.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Random_Walk_example.svg/220px-Random_Walk_example.svg.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/da/Random_Walk_example.svg/330px-Random_Walk_example.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/da/Random_Walk_example.svg/440px-Random_Walk_example.svg.png 2x" data-file-width="720" data-file-height="540" /></a><figcaption>Example of eight realizations of a random walk in one dimension starting at 0: the probability for the time of the last visit to the origin is distributed as Beta(1/2, 1/2)</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Arcsin_density.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Arcsin_density.svg/220px-Arcsin_density.svg.png" decoding="async" width="220" height="166" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/Arcsin_density.svg/330px-Arcsin_density.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/Arcsin_density.svg/440px-Arcsin_density.svg.png 2x" data-file-width="733" data-file-height="553" /></a><figcaption>Beta(1/2, 1/2): The <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a> probability density was proposed by <a href="/wiki/Harold_Jeffreys" title="Harold Jeffreys">Harold Jeffreys</a> to represent uncertainty for a <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a> or a <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a> in <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>, and is now commonly referred to as <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a>: <i>p</i><sup>1/2</sup>(1&#160;&#160;<i>p</i>)<sup>1/2</sup>. This distribution also appears in several <a href="/wiki/Random_walk" title="Random walk">random walk</a> fundamental theorems</figcaption></figure>
<ul><li>Beta(1, 1) ~ <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">U(0, 1)</a> with density 1 on that interval.</li>
<li>Beta(n, 1) ~ Maximum of <i>n</i> independent rvs. with <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">U(0, 1)</a>, sometimes called a <i>a standard power function distribution</i> with density <i>n</i>&#160;<i>x</i><sup><i>n</i>-1</sup> on that interval.</li>
<li>Beta(1, n) ~ Minimum of <i>n</i> independent rvs. with <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">U(0, 1)</a> with density <i>n</i>&#160;(1-<i>x</i>)<sup><i>n</i>-1</sup> on that interval.</li>
<li>If <i>X</i> ~ Beta(3/2, 3/2) and <i>r</i> &gt; 0 then 2<i>rX</i>&#160;&#160;<i>r</i> ~ <a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle distribution</a>.</li>
<li>Beta(1/2, 1/2) is equivalent to the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>. This distribution is also <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> probability for the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a> and <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distributions</a>. The arcsine probability density is a distribution that appears in several random-walk fundamental theorems. In a fair coin toss <a href="/wiki/Random_walk" title="Random walk">random walk</a>, the probability for the time of the last visit to the origin is distributed as an (U-shaped) <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>.<sup id="cite_ref-Feller_5-3" class="reference"><a href="#cite_note-Feller-5">&#91;5&#93;</a></sup><sup id="cite_ref-WillyFeller1_11-1" class="reference"><a href="#cite_note-WillyFeller1-11">&#91;11&#93;</a></sup> In a two-player fair-coin-toss game, a player is said to be in the lead if the random walk (that started at the origin) is above the origin. The most probable number of times that a given player will be in the lead, in a game of length 2<i>N</i>, is not <i>N</i>. On the contrary, <i>N</i> is the least likely number of times that the player will be in the lead. The most likely number of times in the lead is 0 or 2<i>N</i> (following the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>).</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (1,n)=\operatorname {Exponential} (1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>n</mi>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>Exponential</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (1,n)=\operatorname {Exponential} (1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e36846ea4b3cb7e13970a0fb5618bb9e53c5b72f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.901ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (1,n)=\operatorname {Exponential} (1)}"></span> the <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential distribution</a>.</li>
<li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (k,n)=\operatorname {Gamma} (k,1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mi>n</mi>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>,</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>Gamma</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (k,n)=\operatorname {Gamma} (k,1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f88394ad2fa55d9ea30ac2220c0f12befc29869" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.972ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }n\operatorname {Beta} (k,n)=\operatorname {Gamma} (k,1)}"></span> the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a>.</li>
<li>For large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>n</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle n}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="n"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (\alpha n,\beta n)\to {\mathcal {N}}\left({\frac {\alpha }{\alpha +\beta }},{\frac {\alpha \beta }{(\alpha +\beta )^{3}}}{\frac {1}{n}}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>n</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">N</mi>
</mrow>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>n</mi>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (\alpha n,\beta n)\to {\mathcal {N}}\left({\frac {\alpha }{\alpha +\beta }},{\frac {\alpha \beta }{(\alpha +\beta )^{3}}}{\frac {1}{n}}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/485d916ae0bdbd9f069c23bd938746587ed3b0ab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:42.015ex; height:6.343ex;" alt="{\displaystyle \operatorname {Beta} (\alpha n,\beta n)\to {\mathcal {N}}\left({\frac {\alpha }{\alpha +\beta }},{\frac {\alpha \beta }{(\alpha +\beta )^{3}}}{\frac {1}{n}}\right)}"></span> the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>. More precisely, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{n}\sim \operatorname {Beta} (\alpha n,\beta n)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
</mrow>
</msub>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>n</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>n</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X_{n}\sim \operatorname {Beta} (\alpha n,\beta n)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39946932655f63cd48bdd025f3fdb545ec112dbb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.439ex; height:2.843ex;" alt="{\displaystyle X_{n}\sim \operatorname {Beta} (\alpha n,\beta n)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {n}}\left(X_{n}-{\tfrac {\alpha }{\alpha +\beta }}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>n</mi>
</msqrt>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\sqrt {n}}\left(X_{n}-{\tfrac {\alpha }{\alpha +\beta }}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fdaade6d88a840030d07b9c38e2c27d7020f872" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.585ex; height:4.843ex;" alt="{\displaystyle {\sqrt {n}}\left(X_{n}-{\tfrac {\alpha }{\alpha +\beta }}\right)}"></span> converges in distribution to a normal distribution with mean 0 and variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\alpha \beta }{(\alpha +\beta )^{3}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {\alpha \beta }{(\alpha +\beta )^{3}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0114023401152c80846cac38a22673de12583f03" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:6.219ex; height:5.009ex;" alt="{\displaystyle {\tfrac {\alpha \beta }{(\alpha +\beta )^{3}}}}"></span> as <i>n</i> increases.</li></ul>
<h3><span class="mw-headline" id="Derived_from_other_distributions">Derived from other distributions</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=45" title="Edit section: Derived from other distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<ul><li>The <i>k</i>th <a href="/wiki/Order_statistic" title="Order statistic">order statistic</a> of a sample of size <i>n</i> from the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> is a beta random variable, <i>U</i><sub>(<i>k</i>)</sub> ~ Beta(<i>k</i>, <i>n</i>+1<i>k</i>).<sup id="cite_ref-David1_38-0" class="reference"><a href="#cite_note-David1-38">&#91;38&#93;</a></sup></li>
<li>If <i>X</i> ~ Gamma(α, θ) and <i>Y</i> ~ Gamma(β, θ) are independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} (\alpha ,\beta )\,}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} (\alpha ,\beta )\,}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5321274f06f425629d6e07f8bfac884b7508e30a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:18.662ex; height:3.676ex;" alt="{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} (\alpha ,\beta )\,}"></span>.</li>
<li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \chi ^{2}(\alpha )\,}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<msup>
<mi>&#x03C7;<!-- χ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \chi ^{2}(\alpha )\,}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6335f0d8ec60cb75eb2d8203531be0c97677d09" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.272ex; height:3.176ex;" alt="X \sim \chi^2(\alpha)\,"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \chi ^{2}(\beta )\,}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Y</mi>
<mo>&#x223C;<!-- --></mo>
<msup>
<mi>&#x03C7;<!-- χ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Y\sim \chi ^{2}(\beta )\,}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3190978e14ca37cc03cfb58de1cec4413034ad8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.91ex; height:3.176ex;" alt="Y \sim \chi^2(\beta)\,"></span> are independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} ({\tfrac {\alpha }{2}},{\tfrac {\beta }{2}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} ({\tfrac {\alpha }{2}},{\tfrac {\beta }{2}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9816b3e3f3991e974d32e38329d5fcecc0920914" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.121ex; height:4.176ex;" alt="{\displaystyle {\tfrac {X}{X+Y}}\sim \operatorname {Beta} ({\tfrac {\alpha }{2}},{\tfrac {\beta }{2}})}"></span>.</li>
<li>If <i>X</i> ~ U(0, 1) and <i>α</i> &gt; 0 then <i>X</i><sup>1/<i>α</i></sup> ~ Beta(<i>α</i>, 1). The power function distribution.</li>
<li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Binom} (k;n;p)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mi>Binom</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>;</mo>
<mi>n</mi>
<mo>;</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Binom} (k;n;p)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15b0c490938b2674442123aa23bcadbb9f07c9b4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.414ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Binom} (k;n;p)}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {X/(n+1)}\sim \operatorname {Beta} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {X/(n+1)}\sim \operatorname {Beta} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c76eeaba66e49f4e6781eda4eaa84a565d09e6c3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.856ex; height:2.843ex;" alt="{\displaystyle {X/(n+1)}\sim \operatorname {Beta} (\alpha ,\beta )}"></span> for discrete values of <i>n</i> and <i>k</i> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =k+1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =k+1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e61c3d8759776b0a2d34d49bdf7d5c9b3d4615" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.8ex; height:2.343ex;" alt="{\displaystyle \alpha =k+1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =n-k+1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>k</mi>
<mo>+</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \beta =n-k+1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/604588f6f30efb2b1d788a922ac8bcff76e49aab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.88ex; height:2.509ex;" alt="{\displaystyle \beta =n-k+1}"></span>.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39">&#91;39&#93;</a></sup></li>
<li>If <i>X</i> ~ Cauchy(0, 1) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{1+X^{2}}}\sim \operatorname {Beta} \left({\tfrac {1}{2}},{\tfrac {1}{2}}\right)\,}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<msup>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{1+X^{2}}}\sim \operatorname {Beta} \left({\tfrac {1}{2}},{\tfrac {1}{2}}\right)\,}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8be38fd0a97a9044aa661f4b4234a703b4e0e6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.891ex; height:4.176ex;" alt="{\displaystyle {\tfrac {1}{1+X^{2}}}\sim \operatorname {Beta} \left({\tfrac {1}{2}},{\tfrac {1}{2}}\right)\,}"></span></li></ul>
<h3><span class="mw-headline" id="Combination_with_other_distributions">Combination with other distributions</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=46" title="Edit section: Combination with other distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<ul><li><i>X</i> ~ Beta(<i>α</i>, <i>β</i>) and <i>Y</i> ~ F(2<i>β</i>,2<i>α</i>) then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(X\leq {\tfrac {\alpha }{\alpha +\beta x}})=\Pr(Y\geq x)\,}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo movablelimits="true" form="prefix">Pr</mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>&#x2264;<!-- ≤ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>x</mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo movablelimits="true" form="prefix">Pr</mo>
<mo stretchy="false">(</mo>
<mi>Y</mi>
<mo>&#x2265;<!-- ≥ --></mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \Pr(X\leq {\tfrac {\alpha }{\alpha +\beta x}})=\Pr(Y\geq x)\,}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea4e0f1de85d4ebad666d63b2448cb71bea790f3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:28.422ex; height:3.676ex;" alt="{\displaystyle \Pr(X\leq {\tfrac {\alpha }{\alpha +\beta x}})=\Pr(Y\geq x)\,}"></span> for all <i>x</i> &gt; 0.</li></ul>
<h3><span class="mw-headline" id="Compounding_with_other_distributions">Compounding with other distributions</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=47" title="Edit section: Compounding with other distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<ul><li>If <i>p</i> ~ Beta(α, β) and <i>X</i> ~ Bin(<i>k</i>, <i>p</i>) then <i>X</i> ~ <a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">beta-binomial distribution</a></li>
<li>If <i>p</i> ~ Beta(α, β) and <i>X</i> ~ NB(<i>r</i>, <i>p</i>) then <i>X</i> ~ <a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">beta negative binomial distribution</a></li></ul>
<h3><span class="mw-headline" id="Generalisations">Generalisations</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=48" title="Edit section: Generalisations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<ul><li>The generalization to multiple variables, i.e. a <a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">multivariate Beta distribution</a>, is called a <a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet distribution</a>. Univariate marginals of the Dirichlet distribution have a beta distribution. The beta distribution is <a href="/wiki/Conjugate_prior" title="Conjugate prior">conjugate</a> to the binomial and Bernoulli distributions in exactly the same way as the <a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet distribution</a> is conjugate to the <a href="/wiki/Multinomial_distribution" title="Multinomial distribution">multinomial distribution</a> and <a href="/wiki/Categorical_distribution" title="Categorical distribution">categorical distribution</a>.</li>
<li>The <a href="/wiki/Pearson_distribution#The_Pearson_type_I_distribution" title="Pearson distribution">Pearson type I distribution</a> is identical to the beta distribution (except for arbitrary shifting and re-scaling that can also be accomplished with the four parameter parametrization of the beta distribution).</li>
<li>The beta distribution is the special case of the <a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">noncentral beta distribution</a> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BB;<!-- λ --></mi>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \lambda =0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00c4bba30544017fe76932de5a4e25adb5512d95" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.616ex; height:2.176ex;" alt="\lambda =0"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} (\alpha ,\beta )=\operatorname {NonCentralBeta} (\alpha ,\beta ,0)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>NonCentralBeta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} (\alpha ,\beta )=\operatorname {NonCentralBeta} (\alpha ,\beta ,0)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bfd1dc936f885eb37c9460ddcfc9252f7528c7f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.937ex; height:2.843ex;" alt="{\displaystyle \operatorname {Beta} (\alpha ,\beta )=\operatorname {NonCentralBeta} (\alpha ,\beta ,0)}"></span>.</li>
<li>The <a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">generalized beta distribution</a> is a five-parameter distribution family which has the beta distribution as a special case.</li>
<li>The <a href="/wiki/Matrix_variate_beta_distribution" title="Matrix variate beta distribution">matrix variate beta distribution</a> is a distribution for <a href="/wiki/Positive-definite_matrices" class="mw-redirect" title="Positive-definite matrices">positive-definite matrices</a>.</li></ul>
<h2><span class="mw-headline" id="Statistical_inference">Statistical inference</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=49" title="Edit section: Statistical inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<h3><span class="mw-headline" id="Parameter_estimation">Parameter estimation</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=50" title="Edit section: Parameter estimation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<h4><span class="mw-headline" id="Method_of_moments">Method of moments</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=51" title="Edit section: Method of moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<h5><span class="mw-headline" id="Two_unknown_parameters">Two unknown parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=52" title="Edit section: Two unknown parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>Two unknown parameters (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {\alpha }},{\hat {\beta }})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {\alpha }},{\hat {\beta }})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7877c02d2932e6ce21cf536d4f5bb3949fb7a285" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.782ex; height:3.343ex;" alt=" (\hat{\alpha}, \hat{\beta})"></span> of a beta distribution supported in the [0,1] interval) can be estimated, using the method of moments, with the first two moments (sample mean and sample variance) as follows. Let:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample mean(X)}}={\bar {x}}={\frac {1}{N}}\sum _{i=1}^{N}X_{i}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample mean(X)</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample mean(X)}}={\bar {x}}={\frac {1}{N}}\sum _{i=1}^{N}X_{i}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bca659167e8ac6d0b9c74970a03d8e0ceea9cd20" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.822ex; height:7.343ex;" alt="\text{sample mean(X)}=\bar{x} = \frac{1}{N}\sum_{i=1}^N X_i"></span></dd></dl>
<p>be the <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a> estimate and
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample variance(X)}}={\bar {v}}={\frac {1}{N-1}}\sum _{i=1}^{N}(X_{i}-{\bar {x}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample variance(X)</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample variance(X)}}={\bar {v}}={\frac {1}{N-1}}\sum _{i=1}^{N}(X_{i}-{\bar {x}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04941dd09d2e3ac2254e0bb8e2b1231cdeb8b7d9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.414ex; height:7.343ex;" alt="\text{sample variance(X)} =\bar{v} = \frac{1}{N-1}\sum_{i=1}^N (X_i - \bar{x})^2"></span></dd></dl>
<p>be the <a href="/wiki/Sample_variance" class="mw-redirect" title="Sample variance">sample variance</a> estimate. The <a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">method-of-moments</a> estimates of the parameters are
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}={\bar {x}}\left({\frac {{\bar {x}}(1-{\bar {x}})}{\bar {v}}}-1\right),}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}={\bar {x}}\left({\frac {{\bar {x}}(1-{\bar {x}})}{\bar {v}}}-1\right),}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5243227694670d0f6ae568821a547456cb2f4e79" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:24.068ex; height:6.343ex;" alt="\hat{\alpha} = \bar{x} \left(\frac{\bar{x} (1 - \bar{x})}{\bar{v}} - 1 \right),"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}&lt;{\bar {x}}(1-{\bar {x}}),}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\bar {v}}&lt;{\bar {x}}(1-{\bar {x}}),}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e11a6d8b659b70154186d2ef7786b6458bf6e95" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.444ex; height:2.843ex;" alt="\bar{v} &lt;\bar{x}(1 - \bar{x}),"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}=(1-{\bar {x}})\left({\frac {{\bar {x}}(1-{\bar {x}})}{\bar {v}}}-1\right),}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}=(1-{\bar {x}})\left({\frac {{\bar {x}}(1-{\bar {x}})}{\bar {v}}}-1\right),}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92c81662e3ad2fb23fda7d942a3067e043762725" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.844ex; height:6.343ex;" alt="\hat{\beta} = (1-\bar{x}) \left(\frac{\bar{x} (1 - \bar{x})}{\bar{v}} - 1 \right),"></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}&lt;{\bar {x}}(1-{\bar {x}}).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\bar {v}}&lt;{\bar {x}}(1-{\bar {x}}).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a0bbcd50eadf14eb2030cc1fc1246c757cf98f9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.444ex; height:2.843ex;" alt="\bar{v}&lt;\bar{x}(1 - \bar{x})."></span></dd></dl>
<p>When the distribution is required over a known interval other than [0, 1] with random variable <i>X</i>, say [<i>a</i>, <i>c</i>] with random variable <i>Y</i>, then replace <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>x</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\bar {x}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/466e03e1c9533b4dab1b9949dad393883f385d80" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.009ex;" alt="{\bar {x}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\bar {y}}-a}{c-a}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {{\bar {y}}-a}{c-a}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc1c50b9065f399be03b7ccfe3e4cfd1df2c228b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.855ex; height:5.343ex;" alt="\frac{\bar{y}-a}{c-a},"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {v}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\bar {v}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba1d09340f8f6c1979330c2f23e514e38f243a3b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.227ex; height:2.009ex;" alt="{\bar {v}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\bar {v_{Y}}}{(c-a)^{2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<msub>
<mi>v</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\bar {v_{Y}}}{(c-a)^{2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/891375739df6a6c363dd4836de599f29de1c790e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:8.777ex; height:5.843ex;" alt="\frac{\bar{v_Y}}{(c-a)^2}"></span> in the above couple of equations for the shape parameters (see the "Alternative parametrizations, four parameters" section below).,<sup id="cite_ref-40" class="reference"><a href="#cite_note-40">&#91;40&#93;</a></sup> where:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample mean(Y)}}={\bar {y}}={\frac {1}{N}}\sum _{i=1}^{N}Y_{i}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample mean(Y)</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample mean(Y)}}={\bar {y}}={\frac {1}{N}}\sum _{i=1}^{N}Y_{i}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/064cd9b29b4931f7d973c01358f9b76979148e17" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.221ex; height:7.343ex;" alt="\text{sample mean(Y)}=\bar{y} = \frac{1}{N}\sum_{i=1}^N Y_i"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample variance(Y)}}={\bar {v_{Y}}}={\frac {1}{N-1}}\sum _{i=1}^{N}(Y_{i}-{\bar {y}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample variance(Y)</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<msub>
<mi>v</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo stretchy="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample variance(Y)}}={\bar {v_{Y}}}={\frac {1}{N-1}}\sum _{i=1}^{N}(Y_{i}-{\bar {y}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e37291766f3cc121f15fd8a6401d1643f4c77ed7" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.199ex; height:7.343ex;" alt="\text{sample variance(Y)} = \bar{v_Y} = \frac{1}{N-1}\sum_{i=1}^N (Y_i - \bar{y})^2"></span></dd></dl>
<h5><span class="mw-headline" id="Four_unknown_parameters">Four unknown parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=53" title="Edit section: Four unknown parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:(alpha_and_beta)_Parameter_estimates_vs._excess_Kurtosis_and_(squared)_Skewness_Beta_distribution_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/220px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/330px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png/440px-%28alpha_and_beta%29_Parameter_estimates_vs._excess_Kurtosis_and_%28squared%29_Skewness_Beta_distribution_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Solutions for parameter estimates vs. (sample) excess Kurtosis and (sample) squared Skewness Beta distribution</figcaption></figure>
<p>All four parameters (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }},{\hat {a}},{\hat {c}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }},{\hat {a}},{\hat {c}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8116b37df2fff6248cb3bce7dd137af10ed8e5ab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.562ex; height:3.176ex;" alt="\hat{\alpha}, \hat{\beta}, \hat{a}, \hat{c}"></span> of a beta distribution supported in the [<i>a</i>, <i>c</i>] interval -see section <a class="mw-selflink-fragment" href="#Four_parameters_2">"Alternative parametrizations, Four parameters"</a>-) can be estimated, using the method of moments developed by <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a>, by equating sample and population values of the first four central moments (mean, variance, skewness and excess kurtosis).<sup id="cite_ref-JKB_1-18" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-Elderton1906_41-0" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup><sup id="cite_ref-Elderton_and_Johnson_42-0" class="reference"><a href="#cite_note-Elderton_and_Johnson-42">&#91;42&#93;</a></sup> The excess kurtosis was expressed in terms of the square of the skewness, and the sample size ν = α + β, (see previous section <a class="mw-selflink-fragment" href="#Kurtosis">"Kurtosis"</a>) as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}\left({\frac {(2+\nu )}{4}}({\text{skewness}})^{2}-1\right){\text{ if (skewness)}}^{2}-2&lt;{\text{excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<msup>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if (skewness)</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{excess kurtosis}}={\frac {6}{3+\nu }}\left({\frac {(2+\nu )}{4}}({\text{skewness}})^{2}-1\right){\text{ if (skewness)}}^{2}-2&lt;{\text{excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40ad8aea80a012f7bbb462295760a9c2c6b2ea49" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:104.684ex; height:6.343ex;" alt="\text{excess kurtosis} =\frac{6}{3 + \nu}\left(\frac{(2 + \nu)}{4} (\text{skewness})^2 - 1\right)\text{ if (skewness)}^2-2&lt; \text{excess kurtosis}&lt; \tfrac{3}{2} (\text{skewness})^2"></span></dd></dl>
<p>One can use this equation to solve for the sample size ν= α + β in terms of the square of the skewness and the excess kurtosis as follows:<sup id="cite_ref-Elderton1906_41-1" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\nu }}={\hat {\alpha }}+{\hat {\beta }}=3{\frac {({\text{sample excess kurtosis}})-({\text{sample skewness}})^{2}+2}{{\frac {3}{2}}({\text{sample skewness}})^{2}-{\text{(sample excess kurtosis)}}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<mn>2</mn>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>(sample excess kurtosis)</mtext>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\nu }}={\hat {\alpha }}+{\hat {\beta }}=3{\frac {({\text{sample excess kurtosis}})-({\text{sample skewness}})^{2}+2}{{\frac {3}{2}}({\text{sample skewness}})^{2}-{\text{(sample excess kurtosis)}}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f921c58ebdd7caa136034aee66eb29c214a96ff0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:65.669ex; height:7.509ex;" alt="{\displaystyle {\hat {\nu }}={\hat {\alpha }}+{\hat {\beta }}=3{\frac {({\text{sample excess kurtosis}})-({\text{sample skewness}})^{2}+2}{{\frac {3}{2}}({\text{sample skewness}})^{2}-{\text{(sample excess kurtosis)}}}}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msup>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if (sample skewness)</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1ded39b3377f9eef5d7ecfcb6db6cea5c11a2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:75.545ex; height:3.676ex;" alt="{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}"></span></dd></dl>
<p>This is the ratio (multiplied by a factor of 3) between the previously derived limit boundaries for the beta distribution in a space (as originally done by Karl Pearson<sup id="cite_ref-Pearson_20-4" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup>) defined with coordinates of the square of the skewness in one axis and the excess kurtosis in the other axis (see <a href="#Kurtosis_bounded_by_the_square_of_the_skewness">§&#160;Kurtosis bounded by the square of the skewness</a>):
</p><p>The case of zero skewness, can be immediately solved because for zero skewness, α = β and hence ν = 2α = 2β, therefore α = β = ν/2
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}={\hat {\beta }}={\frac {\hat {\nu }}{2}}={\frac {{\frac {3}{2}}({\text{sample excess kurtosis}})+3}{-{\text{(sample excess kurtosis)}}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>3</mn>
</mrow>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>(sample excess kurtosis)</mtext>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}={\hat {\beta }}={\frac {\hat {\nu }}{2}}={\frac {{\frac {3}{2}}({\text{sample excess kurtosis}})+3}{-{\text{(sample excess kurtosis)}}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f2ee658c3932894542979710e9495be0ff74a5" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:44.976ex; height:7.343ex;" alt="{\displaystyle {\hat {\alpha }}={\hat {\beta }}={\frac {\hat {\nu }}{2}}={\frac {{\frac {3}{2}}({\text{sample excess kurtosis}})+3}{-{\text{(sample excess kurtosis)}}}}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ if sample skewness}}=0{\text{ and }}-2&lt;{\text{sample excess kurtosis}}&lt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if sample skewness</mtext>
</mrow>
<mo>=</mo>
<mn>0</mn>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;and&#xA0;</mtext>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{ if sample skewness}}=0{\text{ and }}-2&lt;{\text{sample excess kurtosis}}&lt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f99d8fb52fee902bf792a5ca7699a79828a212c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:61.914ex; height:2.509ex;" alt="{\displaystyle {\text{ if sample skewness}}=0{\text{ and }}-2&lt;{\text{sample excess kurtosis}}&lt;0}"></span></dd></dl>
<p>(Excess kurtosis is negative for the beta distribution with zero skewness, ranging from -2 to 0, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\nu }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\nu }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba8c4f0785c6b4c01435dcc0aa5b9cfba84bb1c3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.316ex; height:2.176ex;" alt="\hat{\nu}"></span> -and therefore the sample shape parameters- is positive, ranging from zero when the shape parameters approach zero and the excess kurtosis approaches -2, to infinity when the shape parameters approach infinity and the excess kurtosis approaches zero).
</p><p>For non-zero sample skewness one needs to solve a system of two coupled equations. Since the skewness and the excess kurtosis are independent of the parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {a}},{\hat {c}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {a}},{\hat {c}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd585fc7cfe1831b2ddc258427b2e6ca017195d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.555ex; height:2.509ex;" alt="\hat{a}, \hat{c}"></span>, the parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26bb8b654aff9b053b200fa71dce1dac87dfa07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.973ex; height:3.176ex;" alt="\hat{\alpha}, \hat{\beta}"></span> can be uniquely determined from the sample skewness and the sample excess kurtosis, by solving the coupled equations with two known variables (sample skewness and sample excess kurtosis) and two unknowns (the shape parameters):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{sample skewness}})^{2}={\frac {4({\hat {\beta }}-{\hat {\alpha }})^{2}(1+{\hat {\alpha }}+{\hat {\beta }})}{{\hat {\alpha }}{\hat {\beta }}(2+{\hat {\alpha }}+{\hat {\beta }})^{2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{sample skewness}})^{2}={\frac {4({\hat {\beta }}-{\hat {\alpha }})^{2}(1+{\hat {\alpha }}+{\hat {\beta }})}{{\hat {\alpha }}{\hat {\beta }}(2+{\hat {\alpha }}+{\hat {\beta }})^{2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/476f4bb49afab07b9d9319ff27855ae9cd9ce357" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:44.774ex; height:7.509ex;" alt="(\text{sample skewness})^2 = \frac{4(\hat{\beta}-\hat{\alpha})^2 (1 + \hat{\alpha} + \hat{\beta})}{\hat{\alpha} \hat{\beta} (2 + \hat{\alpha} + \hat{\beta})^2}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample excess kurtosis}}={\frac {6}{3+{\hat {\alpha }}+{\hat {\beta }}}}\left({\frac {(2+{\hat {\alpha }}+{\hat {\beta }})}{4}}({\text{sample skewness}})^{2}-1\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>4</mn>
</mfrac>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample excess kurtosis}}={\frac {6}{3+{\hat {\alpha }}+{\hat {\beta }}}}\left({\frac {(2+{\hat {\alpha }}+{\hat {\beta }})}{4}}({\text{sample skewness}})^{2}-1\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e903b748dd46c02966e45c5444f51314c452937" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:75.941ex; height:7.509ex;" alt="{\displaystyle {\text{sample excess kurtosis}}={\frac {6}{3+{\hat {\alpha }}+{\hat {\beta }}}}\left({\frac {(2+{\hat {\alpha }}+{\hat {\beta }})}{4}}({\text{sample skewness}})^{2}-1\right)}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msup>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if (sample skewness)</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee1ded39b3377f9eef5d7ecfcb6db6cea5c11a2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:75.545ex; height:3.676ex;" alt="{\displaystyle {\text{ if (sample skewness)}}^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}"></span></dd></dl>
<p>resulting in the following solution:<sup id="cite_ref-Elderton1906_41-2" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}={\frac {\hat {\nu }}{2}}\left(1\pm {\frac {1}{\sqrt {1+{\frac {16({\hat {\nu }}+1)}{({\hat {\nu }}+2)^{2}({\text{sample skewness}})^{2}}}}}}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
<mn>2</mn>
</mfrac>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>&#x00B1;<!-- ± --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>16</mn>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mn>2</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</msqrt>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}={\frac {\hat {\nu }}{2}}\left(1\pm {\frac {1}{\sqrt {1+{\frac {16({\hat {\nu }}+1)}{({\hat {\nu }}+2)^{2}({\text{sample skewness}})^{2}}}}}}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a9b9a43935818dc6c3a75fb41b49d803b2d2741" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:44.844ex; height:13.176ex;" alt="{\displaystyle {\hat {\alpha }},{\hat {\beta }}={\frac {\hat {\nu }}{2}}\left(1\pm {\frac {1}{\sqrt {1+{\frac {16({\hat {\nu }}+1)}{({\hat {\nu }}+2)^{2}({\text{sample skewness}})^{2}}}}}}\right)}"></span></dd></dl>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{ if sample skewness}}\neq 0{\text{ and }}({\text{sample skewness}})^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if sample skewness</mtext>
</mrow>
<mo>&#x2260;<!-- ≠ --></mo>
<mn>0</mn>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;and&#xA0;</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{ if sample skewness}}\neq 0{\text{ and }}({\text{sample skewness}})^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d876ee057046414ad35c2551c997575576d025d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:101.294ex; height:3.509ex;" alt="{\displaystyle {\text{ if sample skewness}}\neq 0{\text{ and }}({\text{sample skewness}})^{2}-2&lt;{\text{sample excess kurtosis}}&lt;{\tfrac {3}{2}}({\text{sample skewness}})^{2}}"></span></dd></dl>
<p>Where one should take the solutions as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}&gt;{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&gt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}&gt;{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bba17be3bb65a91cb1d98c314aa0545401c2109" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.037ex; height:3.176ex;" alt="\hat{\alpha}&gt;\hat{\beta}"></span> for (negative) sample skewness &lt; 0, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}&lt;{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&lt;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}&lt;{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad87e83b4996b5b82de8452d1f861db48a0987ff" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.037ex; height:3.176ex;" alt="\hat{\alpha}&lt;\hat{\beta}"></span> for (positive) sample skewness &gt; 0.
</p><p>The accompanying plot shows these two solutions as surfaces in a space with horizontal axes of (sample excess kurtosis) and (sample squared skewness) and the shape parameters as the vertical axis. The surfaces are constrained by the condition that the sample excess kurtosis must be bounded by the sample squared skewness as stipulated in the above equation. The two surfaces meet at the right edge defined by zero skewness. Along this right edge, both parameters are equal and the distribution is symmetric U-shaped for α = β &lt; 1, uniform for α = β = 1, upside-down-U-shaped for 1 &lt; α = β &lt; 2 and bell-shaped for α = β &gt; 2. The surfaces also meet at the front (lower) edge defined by "the impossible boundary" line (excess kurtosis + 2 - skewness<sup>2</sup> = 0). Along this front (lower) boundary both shape parameters approach zero, and the probability density is concentrated more at one end than the other end (with practically nothing in between), with probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\tfrac {\beta }{\alpha +\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>p</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle p={\tfrac {\beta }{\alpha +\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bceba26790901da810d62299a9ed4c8199828f47" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; margin-left: -0.089ex; width:8.466ex; height:4.509ex;" alt="p=\tfrac{\beta}{\alpha + \beta}"></span> at the left end <i>x</i> = 0 and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=1-p={\tfrac {\alpha }{\alpha +\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>q</mi>
<mo>=</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mstyle>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle q=1-p={\tfrac {\alpha }{\alpha +\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af01bdfe4d6efa34624bc5d506a322a33c2018a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:16.547ex; height:3.676ex;" alt="q = 1-p = \tfrac{\alpha}{\alpha + \beta} "></span> at the right end <i>x</i> = 1. The two surfaces become further apart towards the rear edge. At this rear edge the surface parameters are quite different from each other. As remarked, for example, by Bowman and Shenton,<sup id="cite_ref-BowmanShenton_43-0" class="reference"><a href="#cite_note-BowmanShenton-43">&#91;43&#93;</a></sup> sampling in the neighborhood of the line (sample excess kurtosis - (3/2)(sample skewness)<sup>2</sup> = 0) (the just-J-shaped portion of the rear edge where blue meets beige), "is dangerously near to chaos", because at that line the denominator of the expression above for the estimate ν = α + β becomes zero and hence ν approaches infinity as that line is approached. Bowman and Shenton <sup id="cite_ref-BowmanShenton_43-1" class="reference"><a href="#cite_note-BowmanShenton-43">&#91;43&#93;</a></sup> write that "the higher moment parameters (kurtosis and skewness) are extremely fragile (near that line). However, the mean and standard deviation are fairly reliable." Therefore, the problem is for the case of four parameter estimation for very skewed distributions such that the excess kurtosis approaches (3/2) times the square of the skewness. This boundary line is produced by extremely skewed distributions with very large values of one of the parameters and very small values of the other parameter. See <a href="#Kurtosis_bounded_by_the_square_of_the_skewness">§&#160;Kurtosis bounded by the square of the skewness</a> for a numerical example and further comments about this rear edge boundary line (sample excess kurtosis - (3/2)(sample skewness)<sup>2</sup> = 0). As remarked by Karl Pearson himself <sup id="cite_ref-Pearson1936_44-0" class="reference"><a href="#cite_note-Pearson1936-44">&#91;44&#93;</a></sup> this issue may not be of much practical importance as this trouble arises only for very skewed J-shaped (or mirror-image J-shaped) distributions with very different values of shape parameters that are unlikely to occur much in practice). The usual skewed-bell-shape distributions that occur in practice do not have this parameter estimation problem.
</p><p>The remaining two parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {a}},{\hat {c}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {a}},{\hat {c}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd585fc7cfe1831b2ddc258427b2e6ca017195d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.555ex; height:2.509ex;" alt="\hat{a}, \hat{c}"></span> can be determined using the sample mean and the sample variance using a variety of equations.<sup id="cite_ref-JKB_1-19" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup><sup id="cite_ref-Elderton1906_41-3" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup> One alternative is to calculate the support interval range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2bf77c3305592bf46ab55b0de8908e2eb10c1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.171ex; height:2.843ex;" alt="(\hat{c}-\hat{a})"></span> based on the sample variance and the sample kurtosis. For this purpose one can solve, in terms of the range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2bf77c3305592bf46ab55b0de8908e2eb10c1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.171ex; height:2.843ex;" alt="(\hat{c}- \hat{a})"></span>, the equation expressing the excess kurtosis in terms of the sample variance, and the sample size ν (see <a href="#Kurtosis">§&#160;Kurtosis</a> and <a href="#Alternative_parametrizations,_four_parameters">§&#160;Alternative parametrizations, four parameters</a>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{sample excess kurtosis}}={\frac {6}{(3+{\hat {\nu }})(2+{\hat {\nu }})}}{\bigg (}{\frac {({\hat {c}}-{\hat {a}})^{2}}{\text{(sample variance)}}}-6-5{\hat {\nu }}{\bigg )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>6</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mtext>(sample variance)</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>6</mn>
<mo>&#x2212;<!-- --></mo>
<mn>5</mn>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{sample excess kurtosis}}={\frac {6}{(3+{\hat {\nu }})(2+{\hat {\nu }})}}{\bigg (}{\frac {({\hat {c}}-{\hat {a}})^{2}}{\text{(sample variance)}}}-6-5{\hat {\nu }}{\bigg )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c460925d92ea38bdf5416e50b2dff13d5293329" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:71.898ex; height:6.676ex;" alt="\text{sample excess kurtosis} =\frac{6}{(3 + \hat{\nu})(2 + \hat{\nu})}\bigg(\frac{(\hat{c}- \hat{a})^2}{\text{(sample variance)}} - 6 - 5 \hat{\nu} \bigg)"></span></dd></dl>
<p>to obtain:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})={\sqrt {\text{(sample variance)}}}{\sqrt {6+5{\hat {\nu }}+{\frac {(2+{\hat {\nu }})(3+{\hat {\nu }})}{6}}{\text{(sample excess kurtosis)}}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mtext>(sample variance)</mtext>
</msqrt>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>6</mn>
<mo>+</mo>
<mn>5</mn>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>(sample excess kurtosis)</mtext>
</mrow>
</msqrt>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})={\sqrt {\text{(sample variance)}}}{\sqrt {6+5{\hat {\nu }}+{\frac {(2+{\hat {\nu }})(3+{\hat {\nu }})}{6}}{\text{(sample excess kurtosis)}}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cdf062d6ad446f67133c1f259b23d81dc80c0e9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:81.269ex; height:7.676ex;" alt=" (\hat{c}- \hat{a}) = \sqrt{\text{(sample variance)}}\sqrt{6+5\hat{\nu}+\frac{(2+\hat{\nu})(3+\hat{\nu})}{6}\text{(sample excess kurtosis)}}"></span></dd></dl>
<p>Another alternative is to calculate the support interval range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2bf77c3305592bf46ab55b0de8908e2eb10c1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.171ex; height:2.843ex;" alt="(\hat{c}-\hat{a})"></span> based on the sample variance and the sample skewness.<sup id="cite_ref-Elderton1906_41-4" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup> For this purpose one can solve, in terms of the range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa2bf77c3305592bf46ab55b0de8908e2eb10c1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.171ex; height:2.843ex;" alt="(\hat{c}-\hat{a})"></span>, the equation expressing the squared skewness in terms of the sample variance, and the sample size ν (see section titled "Skewness" and "Alternative parametrizations, four parameters"):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\text{sample skewness}})^{2}={\frac {4}{(2+{\hat {\nu }})^{2}}}{\bigg (}{\frac {({\hat {c}}-{\hat {a}})^{2}}{\text{(sample variance)}}}-4(1+{\hat {\nu }}){\bigg )}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>4</mn>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mtext>(sample variance)</mtext>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>4</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\text{sample skewness}})^{2}={\frac {4}{(2+{\hat {\nu }})^{2}}}{\bigg (}{\frac {({\hat {c}}-{\hat {a}})^{2}}{\text{(sample variance)}}}-4(1+{\hat {\nu }}){\bigg )}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d92409417c7a56192ac25d364a949bbb6eade754" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.792ex; height:6.676ex;" alt="(\text{sample skewness})^2 = \frac{4}{(2+\hat{\nu})^2}\bigg(\frac{(\hat{c}- \hat{a})^2}{ \text{(sample variance)}}-4(1+\hat{\nu})\bigg)"></span></dd></dl>
<p>to obtain:<sup id="cite_ref-Elderton1906_41-5" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}})={\frac {\sqrt {\text{(sample variance)}}}{2}}{\sqrt {(2+{\hat {\nu }})^{2}({\text{sample skewness}})^{2}+16(1+{\hat {\nu }})}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msqrt>
<mtext>(sample variance)</mtext>
</msqrt>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<mn>16</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}})={\frac {\sqrt {\text{(sample variance)}}}{2}}{\sqrt {(2+{\hat {\nu }})^{2}({\text{sample skewness}})^{2}+16(1+{\hat {\nu }})}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94357c829648f16ff30339863e46cb9bc0755da6" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:73.516ex; height:6.176ex;" alt=" (\hat{c}- \hat{a}) = \frac{\sqrt{\text{(sample variance)}}}{2}\sqrt{(2+\hat{\nu})^2(\text{sample skewness})^2+16(1+\hat{\nu})}"></span></dd></dl>
<p>The remaining parameter can be determined from the sample mean and the previously obtained parameters: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {c}}-{\hat {a}}),{\hat {\alpha }},{\hat {\nu }}={\hat {\alpha }}+{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ({\hat {c}}-{\hat {a}}),{\hat {\alpha }},{\hat {\nu }}={\hat {\alpha }}+{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dedfbdca756f6074846d73f732b0289a0751749b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.921ex; height:3.343ex;" alt="(\hat{c}-\hat{a}), \hat{\alpha}, \hat{\nu} = \hat{\alpha}+\hat{\beta}"></span>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {a}}=({\text{sample mean}})-\left({\frac {\hat {\alpha }}{\hat {\nu }}}\right)({\hat {c}}-{\hat {a}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample mean</mtext>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03BD;<!-- ν --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {a}}=({\text{sample mean}})-\left({\frac {\hat {\alpha }}{\hat {\nu }}}\right)({\hat {c}}-{\hat {a}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cd4a8f52bbe61a10c591db75f2ac8551280d692" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.271ex; height:6.176ex;" alt=" \hat{a} = (\text{sample mean}) - \left(\frac{\hat{\alpha}}{\hat{\nu}}\right)(\hat{c}-\hat{a}) "></span></dd></dl>
<p>and finally, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {c}}=({\hat {c}}-{\hat {a}})+{\hat {a}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {c}}=({\hat {c}}-{\hat {a}})+{\hat {a}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a703629c1b8091aacfe6a7f8f104ee1f592893db" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.631ex; height:2.843ex;" alt="\hat{c}= (\hat{c}- \hat{a}) + \hat{a} "></span>.
</p><p>In the above formulas one may take, for example, as estimates of the sample moments:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{sample mean}}&amp;={\overline {y}}={\frac {1}{N}}\sum _{i=1}^{N}Y_{i}\\{\text{sample variance}}&amp;={\overline {v}}_{Y}={\frac {1}{N-1}}\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{2}\\{\text{sample skewness}}&amp;=G_{1}={\frac {N}{(N-1)(N-2)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{3}}{{\overline {v}}_{Y}^{\frac {3}{2}}}}\\{\text{sample excess kurtosis}}&amp;=G_{2}={\frac {N(N+1)}{(N-1)(N-2)(N-3)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{4}}{{\overline {v}}_{Y}^{2}}}-{\frac {3(N-1)^{2}}{(N-2)(N-3)}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample mean</mtext>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample variance</mtext>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample skewness</mtext>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>N</mi>
<mrow>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>3</mn>
</mrow>
</msup>
</mrow>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msubsup>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mtext>sample excess kurtosis</mtext>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>y</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>4</mn>
</mrow>
</msup>
</mrow>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>v</mi>
<mo accent="false">&#x00AF;<!-- ¯ --></mo>
</mover>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>Y</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>3</mn>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>N</mi>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\text{sample mean}}&amp;={\overline {y}}={\frac {1}{N}}\sum _{i=1}^{N}Y_{i}\\{\text{sample variance}}&amp;={\overline {v}}_{Y}={\frac {1}{N-1}}\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{2}\\{\text{sample skewness}}&amp;=G_{1}={\frac {N}{(N-1)(N-2)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{3}}{{\overline {v}}_{Y}^{\frac {3}{2}}}}\\{\text{sample excess kurtosis}}&amp;=G_{2}={\frac {N(N+1)}{(N-1)(N-2)(N-3)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{4}}{{\overline {v}}_{Y}^{2}}}-{\frac {3(N-1)^{2}}{(N-2)(N-3)}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7afd9f1a8604887fe11cf57117dfea6848023586" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -15.171ex; width:91.329ex; height:31.509ex;" alt="{\displaystyle {\begin{aligned}{\text{sample mean}}&amp;={\overline {y}}={\frac {1}{N}}\sum _{i=1}^{N}Y_{i}\\{\text{sample variance}}&amp;={\overline {v}}_{Y}={\frac {1}{N-1}}\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{2}\\{\text{sample skewness}}&amp;=G_{1}={\frac {N}{(N-1)(N-2)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{3}}{{\overline {v}}_{Y}^{\frac {3}{2}}}}\\{\text{sample excess kurtosis}}&amp;=G_{2}={\frac {N(N+1)}{(N-1)(N-2)(N-3)}}{\frac {\sum _{i=1}^{N}(Y_{i}-{\overline {y}})^{4}}{{\overline {v}}_{Y}^{2}}}-{\frac {3(N-1)^{2}}{(N-2)(N-3)}}\end{aligned}}}"></span></dd></dl>
<p>The estimators <i>G</i><sub>1</sub> for <a href="/wiki/Skewness" title="Skewness">sample skewness</a> and <i>G</i><sub>2</sub> for <a href="/wiki/Kurtosis" title="Kurtosis">sample kurtosis</a> are used by <a href="/wiki/DAP_(software)" title="DAP (software)">DAP</a>/<a href="/wiki/SAS_System" class="mw-redirect" title="SAS System">SAS</a>, <a href="/wiki/PSPP" title="PSPP">PSPP</a>/<a href="/wiki/SPSS" title="SPSS">SPSS</a>, and <a href="/wiki/Microsoft_Excel" title="Microsoft Excel">Excel</a>. However, they are not used by <a href="/wiki/BMDP" title="BMDP">BMDP</a> and (according to <sup id="cite_ref-Joanes_and_Gill_45-0" class="reference"><a href="#cite_note-Joanes_and_Gill-45">&#91;45&#93;</a></sup>) they were not used by <a href="/wiki/MINITAB" class="mw-redirect" title="MINITAB">MINITAB</a> in 1998. Actually, Joanes and Gill in their 1998 study<sup id="cite_ref-Joanes_and_Gill_45-1" class="reference"><a href="#cite_note-Joanes_and_Gill-45">&#91;45&#93;</a></sup> concluded that the skewness and kurtosis estimators used in <a href="/wiki/BMDP" title="BMDP">BMDP</a> and in <a href="/wiki/MINITAB" class="mw-redirect" title="MINITAB">MINITAB</a> (at that time) had smaller variance and mean-squared error in normal samples, but the skewness and kurtosis estimators used in <a href="/wiki/DAP_(software)" title="DAP (software)">DAP</a>/<a href="/wiki/SAS_System" class="mw-redirect" title="SAS System">SAS</a>, <a href="/wiki/PSPP" title="PSPP">PSPP</a>/<a href="/wiki/SPSS" title="SPSS">SPSS</a>, namely <i>G</i><sub>1</sub> and <i>G</i><sub>2</sub>, had smaller mean-squared error in samples from a very skewed distribution. It is for this reason that we have spelled out "sample skewness", etc., in the above formulas, to make it explicit that the user should choose the best estimator according to the problem at hand, as the best estimator for skewness and kurtosis depends on the amount of skewness (as shown by Joanes and Gill<sup id="cite_ref-Joanes_and_Gill_45-2" class="reference"><a href="#cite_note-Joanes_and_Gill-45">&#91;45&#93;</a></sup>).
</p>
<h4><span class="mw-headline" id="Maximum_likelihood">Maximum likelihood</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=54" title="Edit section: Maximum likelihood"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<h5><span class="mw-headline" id="Two_unknown_parameters_2">Two unknown parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=55" title="Edit section: Two unknown parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Max_(Joint_Log_Likelihood_per_N)_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png/220px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png" decoding="async" width="220" height="116" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png/330px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/58/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png/440px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D2_-_J._Rodal.png 2x" data-file-width="1739" data-file-height="918" /></a><figcaption>Max (joint log likelihood/<i>N</i>) for beta distribution maxima at <i>α</i>&#160;=&#160;<i>β</i>&#160;=&#160;2</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Max_(Joint_Log_Likelihood_per_N)_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25,0.5,1,2,4,6,8_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png/220px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png" decoding="async" width="220" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png/330px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png/440px-Max_%28Joint_Log_Likelihood_per_N%29_for_Beta_distribution_Maxima_at_alpha%3Dbeta%3D_0.25%2C0.5%2C1%2C2%2C4%2C6%2C8_-_J._Rodal.png 2x" data-file-width="1680" data-file-height="1061" /></a><figcaption>Max (joint log likelihood/<i>N</i>) for Beta distribution maxima at <i>α</i>&#160;=&#160;<i>β</i>&#160;&#8712;&#160;{0.25,0.5,1,2,4,6,8}</figcaption></figure>
<p>As is also the case for <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimates for the <a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma distribution</a>, the maximum likelihood estimates for the beta distribution do not have a general closed form solution for arbitrary values of the shape parameters. If <i>X</i><sub>1</sub>, ..., <i>X<sub>N</sub></i> are independent random variables each having a beta distribution, the joint log likelihood function for <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)&amp;=\sum _{i=1}^{N}\ln \left({\mathcal {L}}_{i}(\alpha ,\beta \mid X_{i})\right)\\&amp;=\sum _{i=1}^{N}\ln \left(f(X_{i};\alpha ,\beta )\right)\\&amp;=\sum _{i=1}^{N}\ln \left({\frac {X_{i}^{\alpha -1}(1-X_{i})^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\right)\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(X_{i})+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msubsup>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msubsup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)&amp;=\sum _{i=1}^{N}\ln \left({\mathcal {L}}_{i}(\alpha ,\beta \mid X_{i})\right)\\&amp;=\sum _{i=1}^{N}\ln \left(f(X_{i};\alpha ,\beta )\right)\\&amp;=\sum _{i=1}^{N}\ln \left({\frac {X_{i}^{\alpha -1}(1-X_{i})^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\right)\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(X_{i})+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4fb5c601f7f997de85e727db8d8b0308af6a71" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -14.505ex; width:75.164ex; height:30.009ex;" alt="{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)&amp;=\sum _{i=1}^{N}\ln \left({\mathcal {L}}_{i}(\alpha ,\beta \mid X_{i})\right)\\&amp;=\sum _{i=1}^{N}\ln \left(f(X_{i};\alpha ,\beta )\right)\\&amp;=\sum _{i=1}^{N}\ln \left({\frac {X_{i}^{\alpha -1}(1-X_{i})^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\right)\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(X_{i})+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )\end{aligned}}}"></span></dd></dl>
<p>Finding the maximum with respect to a shape parameter involves taking the partial derivative with respect to the shape parameter and setting the expression equal to zero yielding the <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimator of the shape parameters:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha }}=\sum _{i=1}^{N}\ln X_{i}-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha }}=\sum _{i=1}^{N}\ln X_{i}-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d936dd94d5ad4b3c27e12654cb07764bcead5284" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.284ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha }}=\sum _{i=1}^{N}\ln X_{i}-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}=0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta }}=\sum _{i=1}^{N}\ln(1-X_{i})-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta }}=\sum _{i=1}^{N}\ln(1-X_{i})-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12538d1b65457b831fbd8127a4820d24632decc1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:54.709ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta }}=\sum _{i=1}^{N}\ln(1-X_{i})-N{\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=0}"></span></dd></dl>
<p>where:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}=-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \alpha }}+{\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}+{\frac {\partial \ln \Gamma (\beta )}{\partial \alpha }}=-\psi (\alpha +\beta )+\psi (\alpha )+0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha }}=-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \alpha }}+{\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}+{\frac {\partial \ln \Gamma (\beta )}{\partial \alpha }}=-\psi (\alpha +\beta )+\psi (\alpha )+0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/351b95f0a4d650f4481ab79d2cc8adcb8f7ba18a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:81.175ex; height:5.843ex;" alt="\frac{\partial \ln \Beta(\alpha,\beta)}{\partial \alpha} = -\frac{\partial \ln \Gamma(\alpha+\beta)}{\partial \alpha}+ \frac{\partial \ln \Gamma(\alpha)}{\partial \alpha}+ \frac{\partial \ln \Gamma(\beta)}{\partial \alpha}=-\psi(\alpha + \beta) + \psi(\alpha) + 0"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\alpha )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\beta )}{\partial \beta }}=-\psi (\alpha +\beta )+0+\psi (\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mn>0</mn>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\alpha )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\beta )}{\partial \beta }}=-\psi (\alpha +\beta )+0+\psi (\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/395e3f27105c89614c2b834d21296a27fda9b7bc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:81.02ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial \ln \mathrm {B} (\alpha ,\beta )}{\partial \beta }}=-{\frac {\partial \ln \Gamma (\alpha +\beta )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\alpha )}{\partial \beta }}+{\frac {\partial \ln \Gamma (\beta )}{\partial \beta }}=-\psi (\alpha +\beta )+0+\psi (\beta )}"></span></dd></dl>
<p>since the <b><a href="/wiki/Digamma_function" title="Digamma function">digamma function</a></b> denoted ψ(α) is defined as the <a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">logarithmic derivative</a> of the <a href="/wiki/Gamma_function" title="Gamma function">gamma function</a>:<sup id="cite_ref-Abramowitz_17-3" class="reference"><a href="#cite_note-Abramowitz-17">&#91;17&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\alpha )={\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi (\alpha )={\frac {\partial \ln \Gamma (\alpha )}{\partial \alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a36357d4b6ef30c0ff68e5a25546b7873e11bd4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.526ex; height:5.843ex;" alt="\psi(\alpha) =\frac {\partial\ln \Gamma(\alpha)}{\partial \alpha}"></span></dd></dl>
<p>To ensure that the values with zero tangent slope are indeed a maximum (instead of a saddle-point or a minimum) one has to also satisfy the condition that the curvature is negative. This amounts to satisfying that the second partial derivative with respect to the shape parameters is negative
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}&lt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>&lt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}&lt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4179be42b0a1f18afa18258ee78745457a592e5e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:41.618ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}&lt;0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}&lt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>&lt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}&lt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf0985833d003549771de21323f1db4aee770c7a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.618ex; height:6.509ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-N{\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}&lt;0}"></span></dd></dl>
<p>using the previous equations, this is equivalent to:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e6864a9409f9bba6a7bdda1e43695bad6c61cba" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:39.356ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \alpha ^{2}}}=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )&gt;0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8355a7e7f6fa44f71e366b668191826ad5b051b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.201ex; height:6.509ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln \mathrm {B} (\alpha ,\beta )}{\partial \beta ^{2}}}=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )&gt;0}"></span></dd></dl>
<p>where the <b><a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a></b>, denoted <i>ψ</i><sub>1</sub>(<i>α</i>), is the second of the <a href="/wiki/Polygamma_function" title="Polygamma function">polygamma functions</a>, and is defined as the derivative of the <a href="/wiki/Digamma" title="Digamma">digamma</a> function:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\alpha )={\frac {\partial ^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \,\psi (\alpha )}{\partial \alpha }}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mspace width="thinmathspace" />
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\alpha )={\frac {\partial ^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \,\psi (\alpha )}{\partial \alpha }}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569f3595daf4226763ad208ce13b94c23b84c783" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.143ex; height:6.176ex;" alt="{\displaystyle \psi _{1}(\alpha )={\frac {\partial ^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \,\psi (\alpha )}{\partial \alpha }}.}"></span></dd></dl>
<p>These conditions are equivalent to stating that the variances of the logarithmically transformed variables are positive, since:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln(X)]=\operatorname {E} [\ln ^{2}(X)]-(\operatorname {E} [\ln(X)])^{2}=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln(X)]=\operatorname {E} [\ln ^{2}(X)]-(\operatorname {E} [\ln(X)])^{2}=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7737d681fea7490e27f8760c6bcc8fccb154904" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.231ex; height:3.176ex;" alt="\operatorname{var}[\ln (X)] = \operatorname{E}[\ln^2 (X)] - (\operatorname{E}[\ln (X)])^2 = \psi_1(\alpha) - \psi_1(\alpha + \beta) "></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln(1-X)]=\operatorname {E} [\ln ^{2}(1-X)]-(\operatorname {E} [\ln(1-X)])^{2}=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<msup>
<mi>ln</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln(1-X)]=\operatorname {E} [\ln ^{2}(1-X)]-(\operatorname {E} [\ln(1-X)])^{2}=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f84c3747955206cf2190c61bd7875a6cd739ac04" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.084ex; height:3.176ex;" alt="\operatorname{var}[\ln (1-X)] = \operatorname{E}[\ln^2 (1-X)] - (\operatorname{E}[\ln (1-X)])^2 = \psi_1(\beta) - \psi_1(\alpha + \beta) "></span></dd></dl>
<p>Therefore, the condition of negative curvature at a maximum is equivalent to the statements:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln(X)]&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln(X)]&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fb5a5d0db057469fb9dad8df2902fe93e3f3b0d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.585ex; height:2.843ex;" alt=" \operatorname{var}[\ln (X)] &gt; 0"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [\ln(1-X)]&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [\ln(1-X)]&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c66a5aaa8362f578beb9b141b4108138b9d21e89" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.588ex; height:2.843ex;" alt=" \operatorname{var}[\ln (1-X)] &gt; 0"></span></dd></dl>
<p>Alternatively, the condition of negative curvature at a maximum is also equivalent to stating that the following <a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">logarithmic derivatives</a> of the <a href="/wiki/Geometric_mean" title="Geometric mean">geometric means</a> <i>G<sub>X</sub></i> and <i>G<sub>(1X)</sub></i> are positive, since:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{X}}{\partial \alpha }}&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{X}}{\partial \alpha }}&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dff4369c6551204082795c96a76d02e1c3c09f1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:34.428ex; height:5.509ex;" alt="{\displaystyle \psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{X}}{\partial \alpha }}&gt;0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{(1-X)}}{\partial \beta }}&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{(1-X)}}{\partial \beta }}&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8032acad733eb8da414442492eba553fc57b91ee" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.652ex; height:6.343ex;" alt="{\displaystyle \psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\frac {\partial \ln G_{(1-X)}}{\partial \beta }}&gt;0}"></span></dd></dl>
<p>While these slopes are indeed positive, the other slopes are negative:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \,\ln G_{X}}{\partial \beta }},{\frac {\partial \ln G_{(1-X)}}{\partial \alpha }}&lt;0.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mspace width="thinmathspace" />
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>&lt;</mo>
<mn>0.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \,\ln G_{X}}{\partial \beta }},{\frac {\partial \ln G_{(1-X)}}{\partial \alpha }}&lt;0.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df246450d8693428e57a8c7c85035fb12c5369e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.362ex; height:6.343ex;" alt="{\displaystyle {\frac {\partial \,\ln G_{X}}{\partial \beta }},{\frac {\partial \ln G_{(1-X)}}{\partial \alpha }}&lt;0.}"></span></dd></dl>
<p>The slopes of the mean and the median with respect to <i>α</i> and <i>β</i> display similar sign behavior.
</p><p>From the condition that at a maximum, the partial derivative with respect to the shape parameter equals zero, we obtain the following system of coupled <a href="/wiki/Maximum_likelihood_estimate" class="mw-redirect" title="Maximum likelihood estimate">maximum likelihood estimate</a> equations (for the average log-likelihoods) that needs to be inverted to obtain the (unknown) shape parameter estimates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26bb8b654aff9b053b200fa71dce1dac87dfa07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.973ex; height:3.176ex;" alt="\hat{\alpha},\hat{\beta}"></span> in terms of the (known) average of logarithms of the samples <i>X</i><sub>1</sub>, ..., <i>X<sub>N</sub></i>:<sup id="cite_ref-JKB_1-20" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\hat {\operatorname {E} }}[\ln(X)]&amp;=\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}=\ln {\hat {G}}_{X}\\{\hat {\operatorname {E} }}[\ln(1-X)]&amp;=\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})=\ln {\hat {G}}_{(1-X)}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi mathvariant="normal">E</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi mathvariant="normal">E</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\hat {\operatorname {E} }}[\ln(X)]&amp;=\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}=\ln {\hat {G}}_{X}\\{\hat {\operatorname {E} }}[\ln(1-X)]&amp;=\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})=\ln {\hat {G}}_{(1-X)}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e43bfd770a92437c9b0bbef4c7c6ead3534eba3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:66.041ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}{\hat {\operatorname {E} }}[\ln(X)]&amp;=\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}=\ln {\hat {G}}_{X}\\{\hat {\operatorname {E} }}[\ln(1-X)]&amp;=\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})=\ln {\hat {G}}_{(1-X)}\end{aligned}}}"></span></dd></dl>
<p>where we recognize <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log {\hat {G}}_{X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>log</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \log {\hat {G}}_{X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c12392eb5835891720681a6588ad3f5de311c23e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.818ex; height:3.176ex;" alt="\log \hat{G}_X"></span> as the logarithm of the sample <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log {\hat {G}}_{(1-X)}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>log</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \log {\hat {G}}_{(1-X)}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce1ba5dc493a3ece85a63b1b823944157687a539" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.198ex; height:3.676ex;" alt="\log \hat{G}_{(1-X)}"></span> as the logarithm of the sample <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> based on (1&#160;&#160;<i>X</i>), the mirror-image of&#160;<i>X</i>. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}={\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}={\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8c3e8e6b17efa205ed99e5cdb6b9c673f0c1cd4" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.037ex; height:3.176ex;" alt="\hat{\alpha}=\hat{\beta}"></span>, it follows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {G}}_{X}={\hat {G}}_{(1-X)}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {G}}_{X}={\hat {G}}_{(1-X)}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30799fc870643fde917716812ec28d77450fff9d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.396ex; height:3.676ex;" alt="\hat{G}_X=\hat{G}_{(1-X)} "></span>.
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\hat {G}}_{X}&amp;=\prod _{i=1}^{N}(X_{i})^{1/N}\\{\hat {G}}_{(1-X)}&amp;=\prod _{i=1}^{N}(1-X_{i})^{1/N}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mi>N</mi>
</mrow>
</msup>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mi>N</mi>
</mrow>
</msup>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\hat {G}}_{X}&amp;=\prod _{i=1}^{N}(X_{i})^{1/N}\\{\hat {G}}_{(1-X)}&amp;=\prod _{i=1}^{N}(1-X_{i})^{1/N}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9165914e4782764af8f69c3d91ced8029fe00493" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:25.53ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}{\hat {G}}_{X}&amp;=\prod _{i=1}^{N}(X_{i})^{1/N}\\{\hat {G}}_{(1-X)}&amp;=\prod _{i=1}^{N}(1-X_{i})^{1/N}\end{aligned}}}"></span></dd></dl>
<p>These coupled equations containing <a href="/wiki/Digamma_function" title="Digamma function">digamma functions</a> of the shape parameter estimates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26bb8b654aff9b053b200fa71dce1dac87dfa07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.973ex; height:3.176ex;" alt="\hat{\alpha},\hat{\beta}"></span> must be solved by numerical methods as done, for example, by Beckman et al.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46">&#91;46&#93;</a></sup> Gnanadesikan et al. give numerical solutions for a few cases.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47">&#91;47&#93;</a></sup> <a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N.L.Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S.Kotz</a><sup id="cite_ref-JKB_1-21" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> suggest that for "not too small" shape parameter estimates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26bb8b654aff9b053b200fa71dce1dac87dfa07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.973ex; height:3.176ex;" alt="\hat{\alpha},\hat{\beta}"></span>, the logarithmic approximation to the digamma function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ({\hat {\alpha }})\approx \ln({\hat {\alpha }}-{\tfrac {1}{2}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2248;<!-- ≈ --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi ({\hat {\alpha }})\approx \ln({\hat {\alpha }}-{\tfrac {1}{2}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3ec1442b30cbf1dc905e33ad571d2e53326bba1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.643ex; height:3.509ex;" alt="\psi(\hat{\alpha}) \approx \ln(\hat{\alpha}-\tfrac{1}{2})"></span> may be used to obtain initial values for an iterative solution, since the equations resulting from this approximation can be solved exactly:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {{\hat {\alpha }}-{\frac {1}{2}}}{{\hat {\alpha }}+{\hat {\beta }}-{\frac {1}{2}}}}\approx \ln {\hat {G}}_{X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>&#x2248;<!-- ≈ --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\frac {{\hat {\alpha }}-{\frac {1}{2}}}{{\hat {\alpha }}+{\hat {\beta }}-{\frac {1}{2}}}}\approx \ln {\hat {G}}_{X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5aa1c1d36d619455ea3d54bf713efe79ebeafea1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:22.324ex; height:8.009ex;" alt="\ln \frac{\hat{\alpha} - \frac{1}{2}}{\hat{\alpha} + \hat{\beta} - \frac{1}{2}} \approx \ln \hat{G}_X "></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {{\hat {\beta }}-{\frac {1}{2}}}{{\hat {\alpha }}+{\hat {\beta }}-{\frac {1}{2}}}}\approx \ln {\hat {G}}_{(1-X)}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>&#x2248;<!-- ≈ --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\frac {{\hat {\beta }}-{\frac {1}{2}}}{{\hat {\alpha }}+{\hat {\beta }}-{\frac {1}{2}}}}\approx \ln {\hat {G}}_{(1-X)}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7420433df379e7886872b8d87d273b061c2e537f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:25.704ex; height:8.176ex;" alt="\ln \frac{\hat{\beta} - \frac{1}{2}}{\hat{\alpha} + \hat{\beta} - \frac{1}{2}}\approx \ln \hat{G}_{(1-X)} "></span></dd></dl>
<p>which leads to the following solution for the initial values (of the estimate shape parameters in terms of the sample geometric means) for an iterative solution:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}\approx {\tfrac {1}{2}}+{\frac {{\hat {G}}_{X}}{2(1-{\hat {G}}_{X}-{\hat {G}}_{(1-X)})}}{\text{ if }}{\hat {\alpha }}&gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}\approx {\tfrac {1}{2}}+{\frac {{\hat {G}}_{X}}{2(1-{\hat {G}}_{X}-{\hat {G}}_{(1-X)})}}{\text{ if }}{\hat {\alpha }}&gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b094d2b5237c96cf673258e2711635ebba0b28ba" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:38.302ex; height:7.509ex;" alt="\hat{\alpha}\approx \tfrac{1}{2} + \frac{\hat{G}_{X}}{2(1-\hat{G}_X-\hat{G}_{(1-X)})} \text{ if } \hat{\alpha} &gt;1"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}\approx {\tfrac {1}{2}}+{\frac {{\hat {G}}_{(1-X)}}{2(1-{\hat {G}}_{X}-{\hat {G}}_{(1-X)})}}{\text{ if }}{\hat {\beta }}&gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2248;<!-- ≈ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mrow>
<mn>2</mn>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}\approx {\tfrac {1}{2}}+{\frac {{\hat {G}}_{(1-X)}}{2(1-{\hat {G}}_{X}-{\hat {G}}_{(1-X)})}}{\text{ if }}{\hat {\beta }}&gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ca5f5ef49f3fea965c9a32dade659ef880f594" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:38.23ex; height:7.843ex;" alt="\hat{\beta}\approx \tfrac{1}{2} + \frac{\hat{G}_{(1-X)}}{2(1-\hat{G}_X-\hat{G}_{(1-X)})} \text{ if } \hat{\beta} &gt; 1"></span></dd></dl>
<p>Alternatively, the estimates provided by the method of moments can instead be used as initial values for an iterative solution of the maximum likelihood coupled equations in terms of the digamma functions.
</p><p>When the distribution is required over a known interval other than [0, 1] with random variable <i>X</i>, say [<i>a</i>, <i>c</i>] with random variable <i>Y</i>, then replace ln(<i>X<sub>i</sub></i>) in the first equation with
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {Y_{i}-a}{c-a}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\frac {Y_{i}-a}{c-a}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6321d786e8900bc2fe0be4b9eca1e856fe524633" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.03ex; height:5.343ex;" alt="\ln \frac{Y_i-a}{c-a},"></span></dd></dl>
<p>and replace ln(1<i>X<sub>i</sub></i>) in the second equation with
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {c-Y_{i}}{c-a}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\frac {c-Y_{i}}{c-a}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f56e30b510f8089a8d4fe6c41fca7ec41e6cb056" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.16ex; height:5.343ex;" alt="\ln \frac{c-Y_i}{c-a}"></span></dd></dl>
<p>(see "Alternative parametrizations, four parameters" section below).
</p><p>If one of the shape parameters is known, the problem is considerably simplified. The following <a href="/wiki/Logit" title="Logit">logit</a> transformation can be used to solve for the unknown shape parameter (for skewed cases such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}\neq {\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2260;<!-- ≠ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}\neq {\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88de4dc6f2131efeb9861f9db76d8969f4d87db8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.037ex; height:3.343ex;" alt="\hat{\alpha}\neq\hat{\beta}"></span>, otherwise, if symmetric, both -equal- parameters are known when one is known):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\operatorname {E} }}\left[\ln \left({\frac {X}{1-X}}\right)\right]=\psi ({\hat {\alpha }})-\psi ({\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {X_{i}}{1-X_{i}}}=\ln {\hat {G}}_{X}-\ln \left({\hat {G}}_{(1-X)}\right)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi mathvariant="normal">E</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow>
<mo>[</mo>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>(</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>)</mo>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\operatorname {E} }}\left[\ln \left({\frac {X}{1-X}}\right)\right]=\psi ({\hat {\alpha }})-\psi ({\hat {\beta }})={\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {X_{i}}{1-X_{i}}}=\ln {\hat {G}}_{X}-\ln \left({\hat {G}}_{(1-X)}\right)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5d9a3105854f3fe65f5a72aa4418da4a50ba11" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:75.422ex; height:7.343ex;" alt="\hat{\operatorname{E}} \left[\ln \left(\frac{X}{1-X} \right) \right]=\psi(\hat{\alpha}) - \psi(\hat{\beta})=\frac{1}{N}\sum_{i=1}^N \ln\frac{X_i}{1-X_i} = \ln \hat{G}_X - \ln \left(\hat{G}_{(1-X)}\right) "></span></dd></dl>
<p>This <a href="/wiki/Logit" title="Logit">logit</a> transformation is the logarithm of the transformation that divides the variable <i>X</i> by its mirror-image (<i>X</i>/(1 - <i>X</i>) resulting in the "inverted beta distribution" or <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a> (also known as beta distribution of the second kind or <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson's Type VI</a>) with support [0, +∞). As previously discussed in the section "Moments of logarithmically transformed random variables," the <a href="/wiki/Logit" title="Logit">logit</a> transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\frac {X}{1-X}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\frac {X}{1-X}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90cf9c0de659980f879076aa348d83a41ab985b0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.145ex; height:5.343ex;" alt="\ln\frac{X}{1-X}"></span>, studied by Johnson,<sup id="cite_ref-JohnsonLogInv_24-1" class="reference"><a href="#cite_note-JohnsonLogInv-24">&#91;24&#93;</a></sup> extends the finite support [0, 1] based on the original variable <i>X</i> to infinite support in both directions of the real line (−∞, +∞).
</p><p>If, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efdb50e00928e4013750a476dab75eeb3cbd5799" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.451ex; height:3.176ex;" alt="\hat{\beta}"></span> is known, the unknown parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682d943d1947245b587f282aba6c88f0870fb302" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:2.176ex;" alt="\hat{\alpha}"></span> can be obtained in terms of the inverse<sup id="cite_ref-invpsi.m_48-0" class="reference"><a href="#cite_note-invpsi.m-48">&#91;48&#93;</a></sup> digamma function of the right hand side of this equation:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ({\hat {\alpha }})={\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {X_{i}}{1-X_{i}}}+\psi ({\hat {\beta }})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi ({\hat {\alpha }})={\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {X_{i}}{1-X_{i}}}+\psi ({\hat {\beta }})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29fdbc8a523905ff0f3b6f20200f8e5b4c258cad" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.441ex; height:7.343ex;" alt="\psi(\hat{\alpha})=\frac{1}{N}\sum_{i=1}^N \ln\frac{X_i}{1-X_i} + \psi(\hat{\beta}) "></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}=\psi ^{-1}(\ln {\hat {G}}_{X}-\ln {\hat {G}}_{(1-X)}+\psi ({\hat {\beta }}))}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<msup>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}=\psi ^{-1}(\ln {\hat {G}}_{X}-\ln {\hat {G}}_{(1-X)}+\psi ({\hat {\beta }}))}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a721c825eb5b38db1c1de5dbe2df5566393f95e9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:35.647ex; height:3.676ex;" alt="{\displaystyle {\hat {\alpha }}=\psi ^{-1}(\ln {\hat {G}}_{X}-\ln {\hat {G}}_{(1-X)}+\psi ({\hat {\beta }}))}"></span></dd></dl>
<p>In particular, if one of the shape parameters has a value of unity, for example for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}=1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}=1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a965585e069f798d68c78b5088a53097d4a338b7" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.712ex; height:3.176ex;" alt="\hat{\beta} = 1"></span> (the power function distribution with bounded support [0,1]), using the identity ψ(<i>x</i> + 1) = ψ(<i>x</i>) + 1/<i>x</i> in the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f58f925d2ede5013a91f3206874b2cabc827cb30" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.636ex; height:3.343ex;" alt="\psi(\hat{\alpha}) - \psi(\hat{\alpha} + \hat{\beta})= \ln \hat{G}_X"></span>, the maximum likelihood estimator for the unknown parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682d943d1947245b587f282aba6c88f0870fb302" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:2.176ex;" alt="\hat{\alpha}"></span> is,<sup id="cite_ref-JKB_1-22" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> exactly:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}=-{\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}}}=-{\frac {1}{\ln {\hat {G}}_{X}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}=-{\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}}}=-{\frac {1}{\ln {\hat {G}}_{X}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83d2c1dcfb9a5fee567dce7e354517f77ffa0c2f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:32.233ex; height:6.843ex;" alt="\hat{\alpha}= - \frac{1}{\frac{1}{N}\sum_{i=1}^N \ln X_i}= - \frac{1}{ \ln \hat{G}_X} "></span></dd></dl>
<p>The beta has support [0, 1], therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {G}}_{X}&lt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>&lt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {G}}_{X}&lt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67fd685a3f6f53b538ee1a4e8a3cb21988b806c2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.72ex; height:3.176ex;" alt="\hat{G}_X &lt; 1"></span>, and hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-\ln {\hat {G}}_{X})&gt;0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&gt;</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle (-\ln {\hat {G}}_{X})&gt;0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e33bf71520d5c05a66871474c69a695632be63b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.051ex; height:3.343ex;" alt="(-\ln \hat{G}_X) &gt;0"></span>, and therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}&gt;0.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&gt;</mo>
<mn>0.</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}&gt;0.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4717b1e2f228d1dcd6ef64e903f377faa8075e44" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.395ex; height:2.176ex;" alt="{\displaystyle {\hat {\alpha }}&gt;0.}"></span>
</p><p>In conclusion, the maximum likelihood estimates of the shape parameters of a beta distribution are (in general) a complicated function of the sample <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a>, and of the sample <a href="/wiki/Geometric_mean" title="Geometric mean">geometric mean</a> based on <i>(1X)</i>, the mirror-image of <i>X</i>. One may ask, if the variance (in addition to the mean) is necessary to estimate two shape parameters with the method of moments, why is the (logarithmic or geometric) variance not necessary to estimate two shape parameters with the maximum likelihood method, for which only the geometric means suffice? The answer is because the mean does not provide as much information as the geometric mean. For a beta distribution with equal shape parameters <i>α</i>&#160;=&#160;<i>β</i>, the mean is exactly 1/2, regardless of the value of the shape parameters, and therefore regardless of the value of the statistical dispersion (the variance). On the other hand, the geometric mean of a beta distribution with equal shape parameters <i>α</i>&#160;=&#160;<i>β</i>, depends on the value of the shape parameters, and therefore it contains more information. Also, the geometric mean of a beta distribution does not satisfy the symmetry conditions satisfied by the mean, therefore, by employing both the geometric mean based on <i>X</i> and geometric mean based on (1&#160;&#160;<i>X</i>), the maximum likelihood method is able to provide best estimates for both parameters <i>α</i>&#160;=&#160;<i>β</i>, without need of employing the variance.
</p><p>One can express the joint log likelihood per <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations in terms of the <i><a href="/wiki/Sufficient_statistic" title="Sufficient statistic">sufficient statistics</a></i> (the sample geometric means) as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)\ln {\hat {G}}_{X}+(\beta -1)\ln {\hat {G}}_{(1-X)}-\ln \mathrm {B} (\alpha ,\beta ).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mi>N</mi>
</mfrac>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)\ln {\hat {G}}_{X}+(\beta -1)\ln {\hat {G}}_{(1-X)}-\ln \mathrm {B} (\alpha ,\beta ).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d51aaa07c41f9f5c49c303cc059ae1aeb54489d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:63.576ex; height:5.676ex;" alt="{\displaystyle {\frac {\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)\ln {\hat {G}}_{X}+(\beta -1)\ln {\hat {G}}_{(1-X)}-\ln \mathrm {B} (\alpha ,\beta ).}"></span></dd></dl>
<p>We can plot the joint log likelihood per <i>N</i> observations for fixed values of the sample geometric means to see the behavior of the likelihood function as a function of the shape parameters α and β. In such a plot, the shape parameter estimators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c26bb8b654aff9b053b200fa71dce1dac87dfa07" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.973ex; height:3.176ex;" alt="\hat{\alpha},\hat{\beta}"></span> correspond to the maxima of the likelihood function. See the accompanying graph that shows that all the likelihood functions intersect at α = β = 1, which corresponds to the values of the shape parameters that give the maximum entropy (the maximum entropy occurs for shape parameters equal to unity: the uniform distribution). It is evident from the plot that the likelihood function gives sharp peaks for values of the shape parameter estimators close to zero, but that for values of the shape parameters estimators greater than one, the likelihood function becomes quite flat, with less defined peaks. Obviously, the maximum likelihood parameter estimation method for the beta distribution becomes less acceptable for larger values of the shape parameter estimators, as the uncertainty in the peak definition increases with the value of the shape parameter estimators. One can arrive at the same conclusion by noticing that the expression for the curvature of the likelihood function is in terms of the geometric variances
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-\operatorname {var} [\ln X]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-\operatorname {var} [\ln X]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/517a09a3b13d22689a3e1e400cbcab3af08e130c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.326ex; height:6.176ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \alpha ^{2}}}=-\operatorname {var} [\ln X]}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-\operatorname {var} [\ln(1-X)]}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-\operatorname {var} [\ln(1-X)]}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1715f50fc408ceba307005a3f9e404520edd5a20" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:36.751ex; height:6.509ex;" alt="{\displaystyle {\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{\partial \beta ^{2}}}=-\operatorname {var} [\ln(1-X)]}"></span></dd></dl>
<p>These variances (and therefore the curvatures) are much larger for small values of the shape parameter α and β. However, for shape parameter values α, β &gt; 1, the variances (and therefore the curvatures) flatten out. Equivalently, this result follows from the <a href="/wiki/Cram%C3%A9r%E2%80%93Rao_bound" title="CramérRao bound">CramérRao bound</a>, since the <a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a> matrix components for the beta distribution are these logarithmic variances. The <a href="/wiki/Cram%C3%A9r%E2%80%93Rao_bound" title="CramérRao bound">CramérRao bound</a> states that the <a href="/wiki/Variance" title="Variance">variance</a> of any <i>unbiased</i> estimator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/682d943d1947245b587f282aba6c88f0870fb302" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:2.176ex;" alt="\hat{\alpha}"></span> of α is bounded by the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">reciprocal</a> of the <a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {var} ({\hat {\alpha }})\geq {\frac {1}{\operatorname {var} [\ln X]}}\geq {\frac {1}{\psi _{1}({\hat {\alpha }})-\psi _{1}({\hat {\alpha }}+{\hat {\beta }})}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<mi mathvariant="normal">r</mi>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2265;<!-- ≥ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">]</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2265;<!-- ≥ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {var} ({\hat {\alpha }})\geq {\frac {1}{\operatorname {var} [\ln X]}}\geq {\frac {1}{\psi _{1}({\hat {\alpha }})-\psi _{1}({\hat {\alpha }}+{\hat {\beta }})}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744f1e8421337ed7a2e6cae00fccec1eaf68e3dc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.23ex; height:6.509ex;" alt="\mathrm{var}(\hat{\alpha})\geq\frac{1}{\operatorname{var}[\ln X]}\geq\frac{1}{\psi_1(\hat{\alpha}) - \psi_1(\hat{\alpha} + \hat{\beta})}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {var} ({\hat {\beta }})\geq {\frac {1}{\operatorname {var} [\ln(1-X)]}}\geq {\frac {1}{\psi _{1}({\hat {\beta }})-\psi _{1}({\hat {\alpha }}+{\hat {\beta }})}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<mi mathvariant="normal">r</mi>
</mrow>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2265;<!-- ≥ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2265;<!-- ≥ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {var} ({\hat {\beta }})\geq {\frac {1}{\operatorname {var} [\ln(1-X)]}}\geq {\frac {1}{\psi _{1}({\hat {\beta }})-\psi _{1}({\hat {\alpha }}+{\hat {\beta }})}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f01dc5c3eb614cfa71a500fd34f3fa430c183c76" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.583ex; height:6.509ex;" alt="\mathrm{var}(\hat{\beta}) \geq\frac{1}{\operatorname{var}[\ln (1-X)]}\geq\frac{1}{\psi_1(\hat{\beta}) - \psi_1(\hat{\alpha} + \hat{\beta})}"></span></dd></dl>
<p>so the variance of the estimators increases with increasing α and β, as the logarithmic variances decrease.
</p><p>Also one can express the joint log likelihood per <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations in terms of the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a> expressions for the logarithms of the sample geometric means as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)(\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))+(\beta -1)(\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))-\ln \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mi>N</mi>
</mfrac>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)(\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))+(\beta -1)(\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))-\ln \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25a4676c5e903b8ecd627fe6effa892db4341aa0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:84.678ex; height:5.676ex;" alt="{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=(\alpha -1)(\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))+(\beta -1)(\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }}))-\ln \mathrm {B} (\alpha ,\beta )}"></span></dd></dl>
<p>this expression is identical to the negative of the cross-entropy (see section on "Quantities of information (entropy)"). Therefore, finding the maximum of the joint log likelihood of the shape parameters, per <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations, is identical to finding the minimum of the cross-entropy for the beta distribution, as a function of the shape parameters.
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=-H=-h-D_{\mathrm {KL} }=-\ln \mathrm {B} (\alpha ,\beta )+(\alpha -1)\psi ({\hat {\alpha }})+(\beta -1)\psi ({\hat {\beta }})-(\alpha +\beta -2)\psi ({\hat {\alpha }}+{\hat {\beta }})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mi>N</mi>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>H</mi>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>h</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>D</mi>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">K</mi>
<mi mathvariant="normal">L</mi>
</mrow>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=-H=-h-D_{\mathrm {KL} }=-\ln \mathrm {B} (\alpha ,\beta )+(\alpha -1)\psi ({\hat {\alpha }})+(\beta -1)\psi ({\hat {\beta }})-(\alpha +\beta -2)\psi ({\hat {\alpha }}+{\hat {\beta }})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55eb1106b7077b4b4d2f1978cf1b4239f7fdb636" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:103.304ex; height:5.676ex;" alt="{\displaystyle {\frac {\ln \,{\mathcal {L}}(\alpha ,\beta \mid X)}{N}}=-H=-h-D_{\mathrm {KL} }=-\ln \mathrm {B} (\alpha ,\beta )+(\alpha -1)\psi ({\hat {\alpha }})+(\beta -1)\psi ({\hat {\beta }})-(\alpha +\beta -2)\psi ({\hat {\alpha }}+{\hat {\beta }})}"></span></dd></dl>
<p>with the cross-entropy defined as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H=\int _{0}^{1}-f(X;{\hat {\alpha }},{\hat {\beta }})\ln(f(X;\alpha ,\beta ))\,{\rm {d}}X}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>H</mi>
<mo>=</mo>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mo>&#x2212;<!-- --></mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>;</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">d</mi>
</mrow>
</mrow>
<mi>X</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle H=\int _{0}^{1}-f(X;{\hat {\alpha }},{\hat {\beta }})\ln(f(X;\alpha ,\beta ))\,{\rm {d}}X}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dacaf170c607c27fac660f26875d1e7915dffcd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.701ex; height:6.176ex;" alt="H = \int_{0}^1 - f(X;\hat{\alpha},\hat{\beta}) \ln (f(X;\alpha,\beta)) \, {\rm d}X "></span></dd></dl>
<h5><span class="mw-headline" id="Four_unknown_parameters_2">Four unknown parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=56" title="Edit section: Four unknown parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>The procedure is similar to the one followed in the two unknown parameter case. If <i>Y</i><sub>1</sub>, ..., <i>Y<sub>N</sub></i> are independent random variables each having a beta distribution with four parameters, the joint log likelihood function for <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)&amp;=\sum _{i=1}^{N}\ln \,{\mathcal {L}}_{i}(\alpha ,\beta ,a,c\mid Y_{i})\\&amp;=\sum _{i=1}^{N}\ln \,f(Y_{i};\alpha ,\beta ,a,c)\\&amp;=\sum _{i=1}^{N}\ln \,{\frac {(Y_{i}-a)^{\alpha -1}(c-Y_{i})^{\beta -1}}{(c-a)^{\alpha +\beta -1}\mathrm {B} (\alpha ,\beta )}}\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(Y_{i}-a)+(\beta -1)\sum _{i=1}^{N}\ln(c-Y_{i})-N\ln \mathrm {B} (\alpha ,\beta )-N(\alpha +\beta -1)\ln(c-a)\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mspace width="thinmathspace" />
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mi>f</mi>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)&amp;=\sum _{i=1}^{N}\ln \,{\mathcal {L}}_{i}(\alpha ,\beta ,a,c\mid Y_{i})\\&amp;=\sum _{i=1}^{N}\ln \,f(Y_{i};\alpha ,\beta ,a,c)\\&amp;=\sum _{i=1}^{N}\ln \,{\frac {(Y_{i}-a)^{\alpha -1}(c-Y_{i})^{\beta -1}}{(c-a)^{\alpha +\beta -1}\mathrm {B} (\alpha ,\beta )}}\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(Y_{i}-a)+(\beta -1)\sum _{i=1}^{N}\ln(c-Y_{i})-N\ln \mathrm {B} (\alpha ,\beta )-N(\alpha +\beta -1)\ln(c-a)\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75cdeeebb8a69646eb10e5e1366b34561bcab563" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -14.338ex; width:107.618ex; height:29.843ex;" alt="{\displaystyle {\begin{aligned}\ln \,{\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)&amp;=\sum _{i=1}^{N}\ln \,{\mathcal {L}}_{i}(\alpha ,\beta ,a,c\mid Y_{i})\\&amp;=\sum _{i=1}^{N}\ln \,f(Y_{i};\alpha ,\beta ,a,c)\\&amp;=\sum _{i=1}^{N}\ln \,{\frac {(Y_{i}-a)^{\alpha -1}(c-Y_{i})^{\beta -1}}{(c-a)^{\alpha +\beta -1}\mathrm {B} (\alpha ,\beta )}}\\&amp;=(\alpha -1)\sum _{i=1}^{N}\ln(Y_{i}-a)+(\beta -1)\sum _{i=1}^{N}\ln(c-Y_{i})-N\ln \mathrm {B} (\alpha ,\beta )-N(\alpha +\beta -1)\ln(c-a)\end{aligned}}}"></span></dd></dl>
<p>Finding the maximum with respect to a shape parameter involves taking the partial derivative with respect to the shape parameter and setting the expression equal to zero yielding the <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimator of the shape parameters:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha }}=\sum _{i=1}^{N}\ln(Y_{i}-a)-N(-\psi (\alpha +\beta )+\psi (\alpha ))-N\ln(c-a)=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha }}=\sum _{i=1}^{N}\ln(Y_{i}-a)-N(-\psi (\alpha +\beta )+\psi (\alpha ))-N\ln(c-a)=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec8ea829b8ce52d65edcf18375e9843f34f3bab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:80.491ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha }}=\sum _{i=1}^{N}\ln(Y_{i}-a)-N(-\psi (\alpha +\beta )+\psi (\alpha ))-N\ln(c-a)=0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta }}=\sum _{i=1}^{N}\ln(c-Y_{i})-N(-\psi (\alpha +\beta )+\psi (\beta ))-N\ln(c-a)=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta }}=\sum _{i=1}^{N}\ln(c-Y_{i})-N(-\psi (\alpha +\beta )+\psi (\beta ))-N\ln(c-a)=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/decc8da83539ce590981c48b27edc90b521d7d0b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:80.113ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta }}=\sum _{i=1}^{N}\ln(c-Y_{i})-N(-\psi (\alpha +\beta )+\psi (\beta ))-N\ln(c-a)=0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a}}=-(\alpha -1)\sum _{i=1}^{N}{\frac {1}{Y_{i}-a}}\,+N(\alpha +\beta -1){\frac {1}{c-a}}=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mo>+</mo>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a}}=-(\alpha -1)\sum _{i=1}^{N}{\frac {1}{Y_{i}-a}}\,+N(\alpha +\beta -1){\frac {1}{c-a}}=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025a6f1a4e3fdcf2f6740a331d8f8b3985fde351" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:70.479ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a}}=-(\alpha -1)\sum _{i=1}^{N}{\frac {1}{Y_{i}-a}}\,+N(\alpha +\beta -1){\frac {1}{c-a}}=0}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c}}=(\beta -1)\sum _{i=1}^{N}{\frac {1}{c-Y_{i}}}\,-N(\alpha +\beta -1){\frac {1}{c-a}}=0}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>c</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mspace width="thinmathspace" />
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c}}=(\beta -1)\sum _{i=1}^{N}{\frac {1}{c-Y_{i}}}\,-N(\alpha +\beta -1){\frac {1}{c-a}}=0}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/976c431dd6db2b070e95ab4c7a685e3dc9039db2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:68.292ex; height:7.343ex;" alt="{\displaystyle {\frac {\partial \ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c}}=(\beta -1)\sum _{i=1}^{N}{\frac {1}{c-Y_{i}}}\,-N(\alpha +\beta -1){\frac {1}{c-a}}=0}"></span></dd></dl>
<p>these equations can be re-arranged as the following system of four coupled equations (the first two equations are geometric means and the second two equations are the harmonic means) in terms of the maximum likelihood estimates for the four parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }},{\hat {a}},{\hat {c}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }},{\hat {a}},{\hat {c}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8116b37df2fff6248cb3bce7dd137af10ed8e5ab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.562ex; height:3.176ex;" alt="\hat{\alpha}, \hat{\beta}, \hat{a}, \hat{c}"></span>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {Y_{i}-{\hat {a}}}{{\hat {c}}-{\hat {a}}}}=\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {Y_{i}-{\hat {a}}}{{\hat {c}}-{\hat {a}}}}=\psi ({\hat {\alpha }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d025e03965c2a5d2c23a9e493d7314c3f2dfca1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.147ex; height:7.343ex;" alt="\frac{1}{N}\sum_{i=1}^N \ln \frac{Y_i - \hat{a}}{\hat{c}-\hat{a}} = \psi(\hat{\alpha})-\psi(\hat{\alpha} +\hat{\beta} )= \ln \hat{G}_X"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {{\hat {c}}-Y_{i}}{{\hat {c}}-{\hat {a}}}}=\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{1-X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{N}}\sum _{i=1}^{N}\ln {\frac {{\hat {c}}-Y_{i}}{{\hat {c}}-{\hat {a}}}}=\psi ({\hat {\beta }})-\psi ({\hat {\alpha }}+{\hat {\beta }})=\ln {\hat {G}}_{1-X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2851705444792cb8f4089f5dea6443823e5a15b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.273ex; height:7.343ex;" alt="\frac{1}{N}\sum_{i=1}^N \ln \frac{\hat{c} - Y_i}{\hat{c}-\hat{a}} = \psi(\hat{\beta})-\psi(\hat{\alpha} + \hat{\beta})= \ln \hat{G}_{1-X}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}{\frac {{\hat {c}}-{\hat {a}}}{Y_{i}-{\hat {a}}}}}}={\frac {{\hat {\alpha }}-1}{{\hat {\alpha }}+{\hat {\beta }}-1}}={\hat {H}}_{X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
<mrow>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>H</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}{\frac {{\hat {c}}-{\hat {a}}}{Y_{i}-{\hat {a}}}}}}={\frac {{\hat {\alpha }}-1}{{\hat {\alpha }}+{\hat {\beta }}-1}}={\hat {H}}_{X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3918a55675f88d637c3c1d91ac5743155433350a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:34.335ex; height:8.176ex;" alt="\frac{1}{\frac{1}{N}\sum_{i=1}^N \frac{\hat{c} - \hat{a}}{Y_i - \hat{a}}} = \frac{\hat{\alpha} - 1}{\hat{\alpha}+\hat{\beta} - 1}= \hat{H}_X"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}{\frac {{\hat {c}}-{\hat {a}}}{{\hat {c}}-Y_{i}}}}}={\frac {{\hat {\beta }}-1}{{\hat {\alpha }}+{\hat {\beta }}-1}}={\hat {H}}_{1-X}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>H</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{{\frac {1}{N}}\sum _{i=1}^{N}{\frac {{\hat {c}}-{\hat {a}}}{{\hat {c}}-Y_{i}}}}}={\frac {{\hat {\beta }}-1}{{\hat {\alpha }}+{\hat {\beta }}-1}}={\hat {H}}_{1-X}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d929f9e0acad7d24ac0112cd9fd865eb67f64ee" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:36.517ex; height:8.843ex;" alt="\frac{1}{\frac{1}{N}\sum_{i=1}^N \frac{\hat{c} - \hat{a}}{\hat{c} - Y_i}} = \frac{\hat{\beta}- 1}{\hat{\alpha}+\hat{\beta} - 1} = \hat{H}_{1-X}"></span></dd></dl>
<p>with sample geometric means:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {G}}_{X}=\prod _{i=1}^{N}\left({\frac {Y_{i}-{\hat {a}}}{{\hat {c}}-{\hat {a}}}}\right)^{\frac {1}{N}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
</mrow>
</msub>
<mo>=</mo>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {G}}_{X}=\prod _{i=1}^{N}\left({\frac {Y_{i}-{\hat {a}}}{{\hat {c}}-{\hat {a}}}}\right)^{\frac {1}{N}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24c05fd2cdd1acc7e2370a6c9155f0658e8bfc73" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.645ex; height:7.676ex;" alt="\hat{G}_X = \prod_{i=1}^{N} \left (\frac{Y_i - \hat{a}}{\hat{c}-\hat{a}} \right )^{\frac{1}{N}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {G}}_{(1-X)}=\prod _{i=1}^{N}\left({\frac {{\hat {c}}-Y_{i}}{{\hat {c}}-{\hat {a}}}}\right)^{\frac {1}{N}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>G</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>=</mo>
<munderover>
<mo>&#x220F;<!-- ∏ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {G}}_{(1-X)}=\prod _{i=1}^{N}\left({\frac {{\hat {c}}-Y_{i}}{{\hat {c}}-{\hat {a}}}}\right)^{\frac {1}{N}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66b3e17f4fea833bd98721a8bcef4e5769e8892f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.087ex; height:7.676ex;" alt="\hat{G}_{(1-X)} = \prod_{i=1}^{N} \left (\frac{\hat{c} - Y_i}{\hat{c}-\hat{a}} \right )^{\frac{1}{N}}"></span></dd></dl>
<p>The parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {a}},{\hat {c}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>a</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>c</mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {a}},{\hat {c}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd585fc7cfe1831b2ddc258427b2e6ca017195d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.555ex; height:2.509ex;" alt="\hat{a}, \hat{c}"></span> are embedded inside the geometric mean expressions in a nonlinear way (to the power 1/<i>N</i>). This precludes, in general, a closed form solution, even for an initial value approximation for iteration purposes. One alternative is to use as initial values for iteration the values obtained from the method of moments solution for the four parameter case. Furthermore, the expressions for the harmonic means are well-defined only for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\alpha }},{\hat {\beta }}&gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\hat {\alpha }},{\hat {\beta }}&gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cf28629a51347b164038f8ed1561affcfc32a08" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.234ex; height:3.176ex;" alt="\hat{\alpha}, \hat{\beta} &gt; 1"></span>, which precludes a maximum likelihood solution for shape parameters less than unity in the four-parameter case. Fisher's information matrix for the four parameter case is <a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">positive-definite</a> only for α, β &gt; 2 (for further discussion, see section on Fisher information matrix, four parameter case), for bell-shaped (symmetric or unsymmetric) beta distributions, with inflection points located to either side of the mode. The following Fisher information components (that represent the expectations of the curvature of the log likelihood function) have <a href="/wiki/Mathematical_singularity" class="mw-redirect" title="Mathematical singularity">singularities</a> at the following values:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]={\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>a</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]={\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53538160a2404a5d7b74ae2033fbbb2dbc1045eb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.033ex; height:7.509ex;" alt="{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]={\mathcal {I}}_{a,a}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]={\mathcal {I}}_{c,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>c</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \beta =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]={\mathcal {I}}_{c,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2c6ecfcafe60e54799ab4a16451cf478d65f7d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.562ex; height:7.509ex;" alt="{\displaystyle \beta =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]={\mathcal {I}}_{c,c}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \partial a}}\right]={\mathcal {I}}_{\alpha ,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \partial a}}\right]={\mathcal {I}}_{\alpha ,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8af544d7c5e0cc278aa725daba7f3de2f70d31" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:47.215ex; height:7.509ex;" alt="{\displaystyle \alpha =2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \partial a}}\right]={\mathcal {I}}_{\alpha ,a}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \partial c}}\right]={\mathcal {I}}_{\beta ,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mn>1</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>c</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \beta =1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \partial c}}\right]={\mathcal {I}}_{\beta ,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f87b32b39997964dcbc95bc64c1364e6832db1d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.792ex; height:7.509ex;" alt="{\displaystyle \beta =1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \partial c}}\right]={\mathcal {I}}_{\beta ,c}}"></span></dd></dl>
<p>(for further discussion see section on Fisher information matrix). Thus, it is not possible to strictly carry on the maximum likelihood estimation for some well known distributions belonging to the four-parameter beta distribution family, like the <a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">uniform distribution</a> (Beta(1, 1, <i>a</i>, <i>c</i>)), and the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a> (Beta(1/2, 1/2, <i>a</i>, <i>c</i>)). <a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N.L.Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S.Kotz</a><sup id="cite_ref-JKB_1-23" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> ignore the equations for the harmonic means and instead suggest "If a and c are unknown, and maximum likelihood estimators of <i>a</i>, <i>c</i>, α and β are required, the above procedure (for the two unknown parameter case, with <i>X</i> transformed as <i>X</i> = (<i>Y</i>&#160;&#160;<i>a</i>)/(<i>c</i>&#160;&#160;<i>a</i>)) can be repeated using a succession of trial values of <i>a</i> and <i>c</i>, until the pair (<i>a</i>, <i>c</i>) for which maximum likelihood (given <i>a</i> and <i>c</i>) is as great as possible, is attained" (where, for the purpose of clarity, their notation for the parameters has been translated into the present notation).
</p>
<h4><span class="mw-headline" id="Fisher_information_matrix">Fisher information matrix</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=57" title="Edit section: Fisher information matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>Let a random variable X have a probability density <i>f</i>(<i>x</i>;<i>α</i>). The partial derivative with respect to the (unknown, and to be estimated) parameter α of the log <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a> is called the <a href="/wiki/Score_(statistics)" class="mw-redirect" title="Score (statistics)">score</a>. The second moment of the score is called the <a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}(\alpha )=\operatorname {E} \left[\left({\frac {\partial }{\partial \alpha }}\ln {\mathcal {L}}(\alpha \mid X)\right)^{2}\right],}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}(\alpha )=\operatorname {E} \left[\left({\frac {\partial }{\partial \alpha }}\ln {\mathcal {L}}(\alpha \mid X)\right)^{2}\right],}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daec13972d17a073bcd447abfde55a6b0e168720" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; margin-left: -0.069ex; width:32.545ex; height:7.509ex;" alt="{\displaystyle {\mathcal {I}}(\alpha )=\operatorname {E} \left[\left({\frac {\partial }{\partial \alpha }}\ln {\mathcal {L}}(\alpha \mid X)\right)^{2}\right],}"></span></dd></dl>
<p>The <a href="/wiki/Expected_value" title="Expected value">expectation</a> of the <a href="/wiki/Score_(statistics)" class="mw-redirect" title="Score (statistics)">score</a> is zero, therefore the Fisher information is also the second moment centered on the mean of the score: the <a href="/wiki/Variance" title="Variance">variance</a> of the score.
</p><p>If the log <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a> is twice differentiable with respect to the parameter α, and under certain regularity conditions,<sup id="cite_ref-Silvey_49-0" class="reference"><a href="#cite_note-Silvey-49">&#91;49&#93;</a></sup> then the Fisher information may also be written as follows (which is often a more convenient form for calculation purposes):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}(\alpha )=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \alpha ^{2}}}\ln({\mathcal {L}}(\alpha \mid X))\right].}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}(\alpha )=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \alpha ^{2}}}\ln({\mathcal {L}}(\alpha \mid X))\right].}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92244569d1fab7e801097aa25a9c883ff75be5aa" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-left: -0.069ex; width:32.486ex; height:6.343ex;" alt="{\displaystyle {\mathcal {I}}(\alpha )=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \alpha ^{2}}}\ln({\mathcal {L}}(\alpha \mid X))\right].}"></span></dd></dl>
<p>Thus, the Fisher information is the negative of the expectation of the second <a href="/wiki/Derivative" title="Derivative">derivative</a> with respect to the parameter α of the log <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a>. Therefore, Fisher information is a measure of the <a href="/wiki/Curvature" title="Curvature">curvature</a> of the log likelihood function of α. A low <a href="/wiki/Curvature" title="Curvature">curvature</a> (and therefore high <a href="/wiki/Radius_of_curvature_(mathematics)" class="mw-redirect" title="Radius of curvature (mathematics)">radius of curvature</a>), flatter log likelihood function curve has low Fisher information; while a log likelihood function curve with large <a href="/wiki/Curvature" title="Curvature">curvature</a> (and therefore low <a href="/wiki/Radius_of_curvature_(mathematics)" class="mw-redirect" title="Radius of curvature (mathematics)">radius of curvature</a>) has high Fisher information. When the Fisher information matrix is computed at the evaluates of the parameters ("the observed Fisher information matrix") it is equivalent to the replacement of the true log likelihood surface by a Taylor's series approximation, taken as far as the quadratic terms.<sup id="cite_ref-EdwardsLikelihood_50-0" class="reference"><a href="#cite_note-EdwardsLikelihood-50">&#91;50&#93;</a></sup> The word information, in the context of Fisher information, refers to information about the parameters. Information such as: estimation, sufficiency and properties of variances of estimators. The <a href="/wiki/Cram%C3%A9r%E2%80%93Rao_bound" title="CramérRao bound">CramérRao bound</a> states that the inverse of the Fisher information is a lower bound on the variance of any <a href="/wiki/Estimator" title="Estimator">estimator</a> of a parameter α:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {var} [{\hat {\alpha }}]\geq {\frac {1}{{\mathcal {I}}(\alpha )}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mover>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x005E;<!-- ^ --></mo>
</mover>
</mrow>
</mrow>
<mo stretchy="false">]</mo>
<mo>&#x2265;<!-- ≥ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {var} [{\hat {\alpha }}]\geq {\frac {1}{{\mathcal {I}}(\alpha )}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d93d4983a2717258c52eb47d1562e849a3a66c5c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.453ex; height:6.009ex;" alt="\operatorname{var}[\hat\alpha] \geq \frac{1}{\mathcal{I}(\alpha)}."></span></dd></dl>
<p>The precision to which one can estimate the estimator of a parameter α is limited by the Fisher Information of the log likelihood function. The Fisher information is a measure of the minimum error involved in estimating a parameter of a distribution and it can be viewed as a measure of the resolving power of an experiment needed to discriminate between two alternative hypothesis of a parameter.<sup id="cite_ref-Jaynes_51-0" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup>
</p><p>When there are <i>N</i> parameters
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\theta _{1}\\\theta _{2}\\\dots \\\theta _{N}\end{bmatrix}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mo>[</mo>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>&#x2026;<!-- … --></mo>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</msub>
</mtd>
</mtr>
</mtable>
<mo>]</mo>
</mrow>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\theta _{1}\\\theta _{2}\\\dots \\\theta _{N}\end{bmatrix}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41de54da204d9c45a480d5a34656fb28c9a0b47a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:7.281ex; height:12.509ex;" alt=" \begin{bmatrix} \theta_1 \\ \theta_{2} \\ \dots \\ \theta_{N} \end{bmatrix},"></span></dd></dl>
<p>then the Fisher information takes the form of an <i>N</i>×<i>N</i> <a href="/wiki/Positive_semidefinite_matrix" class="mw-redirect" title="Positive semidefinite matrix">positive semidefinite</a> <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrix</a>, the Fisher Information Matrix, with typical element:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {({\mathcal {I}}(\theta ))}_{i,j}=\operatorname {E} \left[\left({\frac {\partial }{\partial \theta _{i}}}\ln {\mathcal {L}}\right)\left({\frac {\partial }{\partial \theta _{j}}}\ln {\mathcal {L}}\right)\right].}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>j</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {({\mathcal {I}}(\theta ))}_{i,j}=\operatorname {E} \left[\left({\frac {\partial }{\partial \theta _{i}}}\ln {\mathcal {L}}\right)\left({\frac {\partial }{\partial \theta _{j}}}\ln {\mathcal {L}}\right)\right].}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21548fc75268a39c9137d0476132992173ec961d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.982ex; height:6.343ex;" alt="{(\mathcal{I}(\theta))}_{i, j}=\operatorname{E} \left [\left (\frac{\partial}{\partial\theta_i} \ln \mathcal{L} \right) \left(\frac{\partial}{\partial\theta_j} \ln \mathcal{L} \right) \right ]."></span></dd></dl>
<p>Under certain regularity conditions,<sup id="cite_ref-Silvey_49-1" class="reference"><a href="#cite_note-Silvey-49">&#91;49&#93;</a></sup> the Fisher Information Matrix may also be written in the following form, which is often more convenient for computation:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {({\mathcal {I}}(\theta ))}_{i,j}=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \theta _{i}\,\partial \theta _{j}}}\ln({\mathcal {L}})\right]\,.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>,</mo>
<mi>j</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msub>
<mi>&#x03B8;<!-- θ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>j</mi>
</mrow>
</msub>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mo>]</mo>
</mrow>
<mspace width="thinmathspace" />
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {({\mathcal {I}}(\theta ))}_{i,j}=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \theta _{i}\,\partial \theta _{j}}}\ln({\mathcal {L}})\right]\,.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faab65dd329813220161fa8f3772f043a1018d04" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.99ex; height:6.509ex;" alt="{(\mathcal{I}(\theta))}_{i, j} = - \operatorname{E} \left [\frac{\partial^2}{\partial\theta_i \, \partial\theta_j} \ln (\mathcal{L}) \right ]\,."></span></dd></dl>
<p>With <i>X</i><sub>1</sub>, ..., <i>X<sub>N</sub></i> <a href="/wiki/Iid" class="mw-redirect" title="Iid">iid</a> random variables, an <i>N</i>-dimensional "box" can be constructed with sides <i>X</i><sub>1</sub>, ..., <i>X<sub>N</sub></i>. Costa and Cover<sup id="cite_ref-CostaCover_52-0" class="reference"><a href="#cite_note-CostaCover-52">&#91;52&#93;</a></sup> show that the (Shannon) differential entropy <i>h</i>(<i>X</i>) is related to the volume of the typical set (having the sample entropy close to the true entropy), while the Fisher information is related to the surface of this typical set.
</p>
<h5><span class="mw-headline" id="Two_parameters_2">Two parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=58" title="Edit section: Two parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<p>For <i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>N</i></sub> independent random variables each having a beta distribution parametrized with shape parameters <i>α</i> and <i>β</i>, the joint log likelihood function for <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1)\sum _{i=1}^{N}\ln X_{i}+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>N</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1)\sum _{i=1}^{N}\ln X_{i}+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b736efd188c1d117c4b5a00f569cc3ad82c2d75a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:74.025ex; height:7.343ex;" alt="{\displaystyle \ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1)\sum _{i=1}^{N}\ln X_{i}+(\beta -1)\sum _{i=1}^{N}\ln(1-X_{i})-N\ln \mathrm {B} (\alpha ,\beta )}"></span></dd></dl>
<p>therefore the joint log likelihood function per <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1){\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}+(\beta -1){\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})-\,\ln \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>X</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mspace width="thinmathspace" />
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1){\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}+(\beta -1){\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})-\,\ln \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ed169d98fbafb018139961a5a69b8f8387e496" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:81.048ex; height:7.343ex;" alt="{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta \mid X))=(\alpha -1){\frac {1}{N}}\sum _{i=1}^{N}\ln X_{i}+(\beta -1){\frac {1}{N}}\sum _{i=1}^{N}\ln(1-X_{i})-\,\ln \mathrm {B} (\alpha ,\beta )}"></span></dd></dl>
<p>For the two parameter case, the Fisher information has 4 components: 2 diagonal and 2 off-diagonal. Since the Fisher information matrix is symmetric, one of these off diagonal components is independent. Therefore, the Fisher information matrix has 3 independent components (2 diagonal and 1 off diagonal).
</p><p>Aryal and Nadarajah<sup id="cite_ref-Aryal_53-0" class="reference"><a href="#cite_note-Aryal-53">&#91;53&#93;</a></sup> calculated Fisher's information matrix for the four-parameter case, from which the two parameter case can be obtained as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}\right]=\ln \operatorname {var} _{GX}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mi>X</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}\right]=\ln \operatorname {var} _{GX}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c90003d5bd2f6d2bcfe2c788585689726b4b7e36" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:99.342ex; height:7.509ex;" alt="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \alpha ^{2}}}\right]=\ln \operatorname {var} _{GX}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \beta ^{2}}}\right]=\ln \operatorname {var} _{G(1-X)}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>var</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \beta ^{2}}}\right]=\ln \operatorname {var} _{G(1-X)}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b59bcc31f14f1f4b3b07bd92a66426bb6ac126b1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:106.349ex; height:7.509ex;" alt="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\partial \beta ^{2}}}\right]=\ln \operatorname {var} _{G(1-X)}}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}\right]=\ln \operatorname {cov} _{G{X,(1-X)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2223;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>N</mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}\right]=\ln \operatorname {cov} _{G{X,(1-X)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6c3268da3b23c062ce981ab02d4c454a0267365" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:107.157ex; height:7.509ex;" alt="{\displaystyle -{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,\ln(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta \mid X)}{N\,\partial \alpha \,\partial \beta }}\right]=\ln \operatorname {cov} _{G{X,(1-X)}}}"></span></dd></dl>
<p>Since the Fisher information matrix is symmetric
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,\beta }={\mathcal {I}}_{\beta ,\alpha }=\ln \operatorname {cov} _{G{X,(1-X)}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,\beta }={\mathcal {I}}_{\beta ,\alpha }=\ln \operatorname {cov} _{G{X,(1-X)}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f43e57ed436efb049ce99c8a2e92269acfa1128" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-left: -0.069ex; width:28.076ex; height:3.009ex;" alt="{\displaystyle {\mathcal {I}}_{\alpha ,\beta }={\mathcal {I}}_{\beta ,\alpha }=\ln \operatorname {cov} _{G{X,(1-X)}}}"></span></dd></dl>
<p>The Fisher information components are equal to the log geometric variances and log geometric covariance. Therefore, they can be expressed as <b><a href="/wiki/Trigamma_function" title="Trigamma function">trigamma functions</a></b>, denoted ψ<sub>1</sub>(α), the second of the <a href="/wiki/Polygamma_function" title="Polygamma function">polygamma functions</a>, defined as the derivative of the <a href="/wiki/Digamma" title="Digamma">digamma</a> function:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \psi (\alpha )}{\partial \alpha }}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>d</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mspace width="thinmathspace" />
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03C8;<!-- ψ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \psi (\alpha )}{\partial \alpha }}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0629292f9b4428a64ffd75dd814ea9263dad115c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:30.631ex; height:6.176ex;" alt="{\displaystyle \psi _{1}(\alpha )={\frac {d^{2}\ln \Gamma (\alpha )}{\partial \alpha ^{2}}}=\,{\frac {\partial \psi (\alpha )}{\partial \alpha }}.}"></span></dd></dl>
<p>These derivatives are also derived in the <a href="#Two_unknown_parameters">§&#160;Two unknown parameters</a> and plots of the log likelihood function are also shown in that section. <a href="#Geometric_variance_and_covariance">§&#160;Geometric variance and covariance</a> contains plots and further discussion of the Fisher information matrix components: the log geometric variances and log geometric covariance as a function of the shape parameters α and β. <a href="#Moments_of_logarithmically_transformed_random_variables">§&#160;Moments of logarithmically transformed random variables</a> contains formulas for moments of logarithmically transformed random variables. Images for the Fisher information components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,\alpha },{\mathcal {I}}_{\beta ,\beta }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,\alpha },{\mathcal {I}}_{\beta ,\beta }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f6e447015dcb7f00c9d69c48c9b23ba0bc3ec0e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:9.003ex; height:2.843ex;" alt="\mathcal{I}_{\alpha, \alpha}, \mathcal{I}_{\beta, \beta}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,\beta }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,\beta }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdbb33953faa5a53fe23c281a4e7dbf359c11fbc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:4.019ex; height:2.843ex;" alt="{\displaystyle {\mathcal {I}}_{\alpha ,\beta }}"></span> are shown in <a href="#Geometric_variance">§&#160;Geometric variance</a>.
</p><p>The determinant of Fisher's information matrix is of interest (for example for the calculation of <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> probability). From the expressions for the individual components of the Fisher information matrix, it follows that the determinant of Fisher's (symmetric) information matrix for the beta distribution is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ))&amp;={\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\alpha ,\beta }\\[4pt]&amp;=(\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ))(\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ))-(-\psi _{1}(\alpha +\beta ))(-\psi _{1}(\alpha +\beta ))\\[4pt]&amp;=\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )\\[4pt]\lim _{\alpha \to 0}\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to 0}\det({\mathcal {I}}(\alpha ,\beta ))=\infty \\[4pt]\lim _{\alpha \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))=0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ))&amp;={\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\alpha ,\beta }\\[4pt]&amp;=(\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ))(\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ))-(-\psi _{1}(\alpha +\beta ))(-\psi _{1}(\alpha +\beta ))\\[4pt]&amp;=\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )\\[4pt]\lim _{\alpha \to 0}\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to 0}\det({\mathcal {I}}(\alpha ,\beta ))=\infty \\[4pt]\lim _{\alpha \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))=0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2c5ccf59b05ea730fc108360c07e9ac9634e829" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -10.341ex; margin-bottom: -0.33ex; width:91.864ex; height:22.509ex;" alt="{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ))&amp;={\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\alpha ,\beta }\\[4pt]&amp;=(\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta ))(\psi _{1}(\beta )-\psi _{1}(\alpha +\beta ))-(-\psi _{1}(\alpha +\beta ))(-\psi _{1}(\alpha +\beta ))\\[4pt]&amp;=\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )\\[4pt]\lim _{\alpha \to 0}\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to 0}\det({\mathcal {I}}(\alpha ,\beta ))=\infty \\[4pt]\lim _{\alpha \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))&amp;=\lim _{\beta \to \infty }\det({\mathcal {I}}(\alpha ,\beta ))=0\end{aligned}}}"></span></dd></dl>
<p>From <a href="/wiki/Sylvester%27s_criterion" title="Sylvester&#39;s criterion">Sylvester's criterion</a> (checking whether the diagonal elements are all positive), it follows that the Fisher information matrix for the two parameter case is <a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">positive-definite</a> (under the standard condition that the shape parameters are positive <i>α</i>&#160;&gt;&#160;0 and&#160;<i>β</i>&#160;&gt;&#160;0).
</p>
<h5><span class="mw-headline" id="Four_parameters_2">Four parameters</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=59" title="Edit section: Four parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h5>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Fisher_Information_I(a,a)_for_alpha%3Dbeta_vs_range_(c-a)_and_exponent_alpha%3Dbeta_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/220px-Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/330px-Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/440px-Fisher_Information_I%28a%2Ca%29_for_alpha%3Dbeta_vs_range_%28c-a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png 2x" data-file-width="1711" data-file-height="1076" /></a><figcaption>Fisher Information <i>I</i>(<i>a</i>,<i>a</i>) for <i>α</i>&#160;=&#160;<i>β</i> vs range (<i>c</i>&#160;&#160;<i>a</i>) and exponent&#160;<i>α</i>&#160;=&#160;<i>β</i></figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Fisher_Information_I(alpha,a)_for_alpha%3Dbeta,_vs._range_(c_-_a)_and_exponent_alpha%3Dbeta_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/220px-Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/330px-Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png/440px-Fisher_Information_I%28alpha%2Ca%29_for_alpha%3Dbeta%2C_vs._range_%28c_-_a%29_and_exponent_alpha%3Dbeta_-_J._Rodal.png 2x" data-file-width="1705" data-file-height="1137" /></a><figcaption>Fisher Information <i>I</i>(<i>α</i>,<i>a</i>) for <i>α</i>&#160;=&#160;<i>β</i>, vs. range (<i>c</i>&#160;&#160;<i>a</i>) and exponent <i>α</i>&#160;=&#160;<i>β</i></figcaption></figure>
<p>If <i>Y</i><sub>1</sub>, ..., <i>Y<sub>N</sub></i> are independent random variables each having a beta distribution with four parameters: the exponents <i>α</i> and <i>β</i>, and also <i>a</i> (the minimum of the distribution range), and <i>c</i> (the maximum of the distribution range) (section titled "Alternative parametrizations", "Four parameters"), with <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(y;\alpha ,\beta ,a,c)={\frac {f(x;\alpha ,\beta )}{c-a}}={\frac {\left({\frac {y-a}{c-a}}\right)^{\alpha -1}\left({\frac {c-y}{c-a}}\right)^{\beta -1}}{(c-a)B(\alpha ,\beta )}}={\frac {(y-a)^{\alpha -1}(c-y)^{\beta -1}}{(c-a)^{\alpha +\beta -1}B(\alpha ,\beta )}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>y</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>y</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>y</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mi>B</mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle f(y;\alpha ,\beta ,a,c)={\frac {f(x;\alpha ,\beta )}{c-a}}={\frac {\left({\frac {y-a}{c-a}}\right)^{\alpha -1}\left({\frac {c-y}{c-a}}\right)^{\beta -1}}{(c-a)B(\alpha ,\beta )}}={\frac {(y-a)^{\alpha -1}(c-y)^{\beta -1}}{(c-a)^{\alpha +\beta -1}B(\alpha ,\beta )}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e3a650c9f6ecc04d36869cc99297e5c853dd2f1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:75.405ex; height:8.843ex;" alt="f(y; \alpha, \beta, a, c) = \frac{f(x;\alpha,\beta)}{c-a} =\frac{ \left (\frac{y-a}{c-a} \right )^{\alpha-1} \left (\frac{c-y}{c-a} \right)^{\beta-1} }{(c-a)B(\alpha, \beta)}=\frac{ (y-a)^{\alpha-1} (c-y)^{\beta-1} }{(c-a)^{\alpha+\beta-1}B(\alpha, \beta)}."></span></dd></dl>
<p>the joint log likelihood function per <i>N</i> <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">iid</a> observations is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta ,a,c\mid Y))={\frac {\alpha -1}{N}}\sum _{i=1}^{N}\ln(Y_{i}-a)+{\frac {\beta -1}{N}}\sum _{i=1}^{N}\ln(c-Y_{i})-\ln \mathrm {B} (\alpha ,\beta )-(\alpha +\beta -1)\ln(c-a)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mi>N</mi>
</mfrac>
</mrow>
<munderover>
<mo>&#x2211;<!-- ∑ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>N</mi>
</mrow>
</munderover>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>Y</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>i</mi>
</mrow>
</msub>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta ,a,c\mid Y))={\frac {\alpha -1}{N}}\sum _{i=1}^{N}\ln(Y_{i}-a)+{\frac {\beta -1}{N}}\sum _{i=1}^{N}\ln(c-Y_{i})-\ln \mathrm {B} (\alpha ,\beta )-(\alpha +\beta -1)\ln(c-a)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caf0a0718a29349d140ea58f66e5beb43b0e3fbc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:104.728ex; height:7.343ex;" alt="{\displaystyle {\frac {1}{N}}\ln({\mathcal {L}}(\alpha ,\beta ,a,c\mid Y))={\frac {\alpha -1}{N}}\sum _{i=1}^{N}\ln(Y_{i}-a)+{\frac {\beta -1}{N}}\sum _{i=1}^{N}\ln(c-Y_{i})-\ln \mathrm {B} (\alpha ,\beta )-(\alpha +\beta -1)\ln(c-a)}"></span></dd></dl>
<p>For the four parameter case, the Fisher information has 4*4=16 components. It has 12 off-diagonal components = (4×4 total 4 diagonal). Since the Fisher information matrix is symmetric, half of these components (12/2=6) are independent. Therefore, the Fisher information matrix has 6 independent off-diagonal + 4 diagonal = 10 independent components. Aryal and Nadarajah<sup id="cite_ref-Aryal_53-1" class="reference"><a href="#cite_note-Aryal-53">&#91;53&#93;</a></sup> calculated Fisher's information matrix for the four parameter case as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}\right]=\ln(\operatorname {var_{GX}} )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B1;<!-- α --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mi mathvariant="normal">X</mi>
</mrow>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}\right]=\ln(\operatorname {var_{GX}} )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31be86f2c53663c6d3975bc2676806ba3e538423" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:114.59ex; height:7.509ex;" alt="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}=\operatorname {var} [\ln(X)]=\psi _{1}(\alpha )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\alpha }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha ^{2}}}\right]=\ln(\operatorname {var_{GX}} )}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}\right]=\ln(\operatorname {var_{G(1-X)}} )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>&#x03B2;<!-- β --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-OP MJX-fixedlimits">
<mi mathvariant="normal">v</mi>
<mi mathvariant="normal">a</mi>
<msub>
<mi mathvariant="normal">r</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">G</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mtext>-</mtext>
<mi mathvariant="normal">X</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
</mrow>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}\right]=\ln(\operatorname {var_{G(1-X)}} )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25ab885119f25fae0b9919326db96395d13e3bc3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:120.866ex; height:7.509ex;" alt="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}=\operatorname {var} [\ln(1-X)]=\psi _{1}(\beta )-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\beta ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta ^{2}}}\right]=\ln(\operatorname {var_{G(1-X)}} )}"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}\right]=\ln(\operatorname {cov} _{G{X,(1-X)}})}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">[</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">]</mo>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>=</mo>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mo>=</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>cov</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>G</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>X</mi>
<mo>,</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mrow>
</mrow>
</msub>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}\right]=\ln(\operatorname {cov} _{G{X,(1-X)}})}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a56af746fb9315340cf382951fe0c3f3640678" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:120.635ex; height:7.509ex;" alt="{\displaystyle -{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}=\operatorname {cov} [\ln X,(1-X)]=-\psi _{1}(\alpha +\beta )={\mathcal {I}}_{\alpha ,\beta }=\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial \beta }}\right]=\ln(\operatorname {cov} _{G{X,(1-X)}})}"></span></dd></dl>
<p>In the above expressions, the use of <i>X</i> instead of <i>Y</i> in the expressions var[ln(<i>X</i>)] = ln(var<sub><i>GX</i></sub>) is <i>not an error</i>. The expressions in terms of the log geometric variances and log geometric covariance occur as functions of the two parameter <i>X</i> ~ Beta(<i>α</i>, <i>β</i>) parametrization because when taking the partial derivatives with respect to the exponents (<i>α</i>, <i>β</i>) in the four parameter case, one obtains the identical expressions as for the two parameter case: these terms of the four parameter Fisher information matrix are independent of the minimum <i>a</i> and maximum <i>c</i> of the distribution's range. The only non-zero term upon double differentiation of the log likelihood function with respect to the exponents <i>α</i> and <i>β</i> is the second derivative of the log of the beta function: ln(B(<i>α</i>, <i>β</i>)). This term is independent of the minimum <i>a</i> and maximum <i>c</i> of the distribution's range. Double differentiation of this term results in trigamma functions. The sections titled "Maximum likelihood", "Two unknown parameters" and "Four unknown parameters" also show this fact.
</p><p>The Fisher information for <i>N</i> <a href="/wiki/I.i.d." class="mw-redirect" title="I.i.d.">i.i.d.</a> samples is <i>N</i> times the individual Fisher information (eq. 11.279, page 394 of Cover and Thomas<sup id="cite_ref-Cover_and_Thomas_27-2" class="reference"><a href="#cite_note-Cover_and_Thomas-27">&#91;27&#93;</a></sup>). (Aryal and Nadarajah<sup id="cite_ref-Aryal_53-2" class="reference"><a href="#cite_note-Aryal-53">&#91;53&#93;</a></sup> take a single observation, <i>N</i> = 1, to calculate the following components of the Fisher information, which leads to the same result as considering the derivatives of the log likelihood per <i>N</i> observations. Moreover, below the erroneous expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f278587aa7ba2520daa70abd786de17e083f9a99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.764ex; height:2.843ex;" alt="{\mathcal{I}}_{a, a}"></span> in Aryal and Nadarajah has been corrected.)
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]&amp;={\mathcal {I}}_{a,a}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]&amp;={\mathcal {I}}_{c,c}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a\,\partial c}}\right]&amp;={\mathcal {I}}_{a,c}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\\\alpha &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial a}}\right]&amp;={\mathcal {I}}_{\alpha ,a}={\frac {\beta }{(\alpha -1)(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial c}}\right]&amp;={\mathcal {I}}_{\alpha ,c}={\frac {1}{(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial a}}\right]&amp;={\mathcal {I}}_{\beta ,a}=-{\frac {1}{(c-a)}}\\\beta &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial c}}\right]&amp;={\mathcal {I}}_{\beta ,c}=-{\frac {\alpha }{(\beta -1)(c-a)}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>a</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<msup>
<mi>c</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>a</mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>c</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>1</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B1;<!-- α --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>c</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
<mo>:</mo>
<mspace width="1em" />
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>N</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo>&#x2223;<!-- --></mo>
<mi>Y</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>&#x03B2;<!-- β --></mi>
<mspace width="thinmathspace" />
<mi mathvariant="normal">&#x2202;<!-- ∂ --></mi>
<mi>c</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]&amp;={\mathcal {I}}_{a,a}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]&amp;={\mathcal {I}}_{c,c}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a\,\partial c}}\right]&amp;={\mathcal {I}}_{a,c}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\\\alpha &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial a}}\right]&amp;={\mathcal {I}}_{\alpha ,a}={\frac {\beta }{(\alpha -1)(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial c}}\right]&amp;={\mathcal {I}}_{\alpha ,c}={\frac {1}{(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial a}}\right]&amp;={\mathcal {I}}_{\beta ,a}=-{\frac {1}{(c-a)}}\\\beta &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial c}}\right]&amp;={\mathcal {I}}_{\beta ,c}=-{\frac {\alpha }{(\beta -1)(c-a)}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/636646f51bdb1a3193b1721483878e98f4f19c3e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -26.171ex; width:67.472ex; height:53.509ex;" alt="{\displaystyle {\begin{aligned}\alpha &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a^{2}}}\right]&amp;={\mathcal {I}}_{a,a}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial c^{2}}}\right]&amp;={\mathcal {I}}_{c,c}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial a\,\partial c}}\right]&amp;={\mathcal {I}}_{a,c}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\\\alpha &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial a}}\right]&amp;={\mathcal {I}}_{\alpha ,a}={\frac {\beta }{(\alpha -1)(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \alpha \,\partial c}}\right]&amp;={\mathcal {I}}_{\alpha ,c}={\frac {1}{(c-a)}}\\\operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial a}}\right]&amp;={\mathcal {I}}_{\beta ,a}=-{\frac {1}{(c-a)}}\\\beta &gt;1:\quad \operatorname {E} \left[-{\frac {1}{N}}{\frac {\partial ^{2}\ln {\mathcal {L}}(\alpha ,\beta ,a,c\mid Y)}{\partial \beta \,\partial c}}\right]&amp;={\mathcal {I}}_{\beta ,c}=-{\frac {\alpha }{(\beta -1)(c-a)}}\end{aligned}}}"></span></dd></dl>
<p>The lower two diagonal entries of the Fisher information matrix, with respect to the parameter <i>a</i> (the minimum of the distribution's range): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f278587aa7ba2520daa70abd786de17e083f9a99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.764ex; height:2.843ex;" alt="\mathcal{I}_{a, a}"></span>, and with respect to the parameter <i>c</i> (the maximum of the distribution's range): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{c,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{c,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d1fde4e1dff40eca80d1e1dd26147940f58b24" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.449ex; height:2.843ex;" alt="\mathcal{I}_{c, c}"></span> are only defined for exponents <i>α</i> &gt; 2 and <i>β</i> &gt; 2 respectively. The Fisher information matrix component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f278587aa7ba2520daa70abd786de17e083f9a99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.764ex; height:2.843ex;" alt="\mathcal{I}_{a, a}"></span> for the minimum <i>a</i> approaches infinity for exponent α approaching 2 from above, and the Fisher information matrix component <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{c,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{c,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d1fde4e1dff40eca80d1e1dd26147940f58b24" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.449ex; height:2.843ex;" alt="\mathcal{I}_{c, c}"></span> for the maximum <i>c</i> approaches infinity for exponent <i>β</i> approaching 2 from above.
</p><p>The Fisher information matrix for the four parameter case does not depend on the individual values of the minimum <i>a</i> and the maximum <i>c</i>, but only on the total range (<i>c</i>&#160;&#160;<i>a</i>). Moreover, the components of the Fisher information matrix that depend on the range (<i>c</i>&#160;&#160;<i>a</i>), depend only through its inverse (or the square of the inverse), such that the Fisher information decreases for increasing range (<i>c</i>&#160;&#160;<i>a</i>).
</p><p>The accompanying images show the Fisher information components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f278587aa7ba2520daa70abd786de17e083f9a99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.764ex; height:2.843ex;" alt="\mathcal{I}_{a, a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7931360bd161a55cc85431049248a347269b12" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.947ex; height:2.843ex;" alt="\mathcal{I}_{\alpha, a}"></span>. Images for the Fisher information components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,\alpha }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,\alpha }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9abc676c8d87651a340ff84cb55e3674bab2683" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:4.129ex; height:2.843ex;" alt="\mathcal{I}_{\alpha, \alpha}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\beta ,\beta }}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\beta ,\beta }}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2659a9ad09d8af2a486a30d8aa82cc39d743a524" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.909ex; height:2.843ex;" alt="\mathcal{I}_{\beta, \beta}"></span> are shown in <a href="#Geometric_variance">§&#160;Geometric variance</a>. All these Fisher information components look like a basin, with the "walls" of the basin being located at low values of the parameters.
</p><p>The following four-parameter-beta-distribution Fisher information components can be expressed in terms of the two-parameter: <i>X</i> ~ Beta(α, β) expectations of the transformed ratio ((1&#160;&#160;<i>X</i>)/<i>X</i>) and of its mirror image (<i>X</i>/(1&#160;&#160;<i>X</i>)), scaled by the range (<i>c</i>&#160;&#160;<i>a</i>), which may be helpful for interpretation:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\alpha ,a}={\frac {\operatorname {E} \left[{\frac {1-X}{X}}\right]}{c-a}}={\frac {\beta }{(\alpha -1)(c-a)}}{\text{ if }}\alpha &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B2;<!-- β --></mi>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\alpha ,a}={\frac {\operatorname {E} \left[{\frac {1-X}{X}}\right]}{c-a}}={\frac {\beta }{(\alpha -1)(c-a)}}{\text{ if }}\alpha &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e670565bb8d06bace69cf892864520f5c83b5449" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.069ex; width:42.385ex; height:8.343ex;" alt="\mathcal{I}_{\alpha, a} =\frac{\operatorname{E} \left[\frac{1-X}{X} \right ]}{c-a}= \frac{\beta}{(\alpha-1)(c-a)} \text{ if }\alpha &gt; 1"></span></dd>
<dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{\beta ,c}=-{\frac {\operatorname {E} \left[{\frac {X}{1-X}}\right]}{c-a}}=-{\frac {\alpha }{(\beta -1)(c-a)}}{\text{ if }}\beta &gt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi mathvariant="normal">E</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>&#x03B1;<!-- α --></mi>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{\beta ,c}=-{\frac {\operatorname {E} \left[{\frac {X}{1-X}}\right]}{c-a}}=-{\frac {\alpha }{(\beta -1)(c-a)}}{\text{ if }}\beta &gt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94f9b7788a4f19e1cbc765ab8fc85a7ad55dec4f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-left: -0.069ex; width:45.422ex; height:8.343ex;" alt="\mathcal{I}_{\beta, c} = -\frac{\operatorname{E} \left [\frac{X}{1-X} \right ]}{c-a}=- \frac{\alpha}{(\beta-1)(c-a)}\text{ if }\beta&gt; 1"></span></dd></dl>
<p>These are also the expected values of the "inverted beta distribution" or <a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime distribution</a> (also known as beta distribution of the second kind or <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson's Type VI</a>) <sup id="cite_ref-JKB_1-24" class="reference"><a href="#cite_note-JKB-1">&#91;1&#93;</a></sup> and its mirror image, scaled by the range (<i>c</i>&#160;&#160;<i>a</i>).
</p><p>Also, the following Fisher information components can be expressed in terms of the harmonic (1/X) variances or of variances based on the ratio transformed variables ((1-X)/X) as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &gt;2:\quad {\mathcal {I}}_{a,a}&amp;=\operatorname {var} \left[{\frac {1}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {1-X}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad {\mathcal {I}}_{c,c}&amp;=\operatorname {var} \left[{\frac {1}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {X}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\{\mathcal {I}}_{a,c}&amp;=\operatorname {cov} \left[{\frac {1}{X}},{\frac {1}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {X}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
<mo>&gt;</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>2</mn>
<mo>:</mo>
<mspace width="1em" />
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mi>var</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
<mo>]</mo>
</mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mi>cov</mi>
<mo>&#x2061;<!-- --></mo>
<mrow>
<mo>[</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
<mi>X</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>X</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &gt;2:\quad {\mathcal {I}}_{a,a}&amp;=\operatorname {var} \left[{\frac {1}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {1-X}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad {\mathcal {I}}_{c,c}&amp;=\operatorname {var} \left[{\frac {1}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {X}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\{\mathcal {I}}_{a,c}&amp;=\operatorname {cov} \left[{\frac {1}{X}},{\frac {1}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {X}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f89730020364bb58791ca0eb47d0de25c896c2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:103.715ex; height:20.176ex;" alt="{\displaystyle {\begin{aligned}\alpha &gt;2:\quad {\mathcal {I}}_{a,a}&amp;=\operatorname {var} \left[{\frac {1}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {1-X}{X}}\right]\left({\frac {\alpha -1}{c-a}}\right)^{2}={\frac {\beta (\alpha +\beta -1)}{(\alpha -2)(c-a)^{2}}}\\\beta &gt;2:\quad {\mathcal {I}}_{c,c}&amp;=\operatorname {var} \left[{\frac {1}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}=\operatorname {var} \left[{\frac {X}{1-X}}\right]\left({\frac {\beta -1}{c-a}}\right)^{2}={\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(c-a)^{2}}}\\{\mathcal {I}}_{a,c}&amp;=\operatorname {cov} \left[{\frac {1}{X}},{\frac {1}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}=\operatorname {cov} \left[{\frac {1-X}{X}},{\frac {X}{1-X}}\right]{\frac {(\alpha -1)(\beta -1)}{(c-a)^{2}}}={\frac {(\alpha +\beta -1)}{(c-a)^{2}}}\end{aligned}}}"></span></dd></dl>
<p>See section "Moments of linearly transformed, product and inverted random variables" for these expectations.
</p><p>The determinant of Fisher's information matrix is of interest (for example for the calculation of <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> probability). From the expressions for the individual components, it follows that the determinant of Fisher's (symmetric) information matrix for the beta distribution with four parameters is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ,a,c))={}&amp;-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\beta }^{2}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\beta }^{2}\\&amp;{}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}+2{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}\\&amp;{}-2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,a}^{2}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}^{2}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,\beta }\\&amp;{}+2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }{\text{ if }}\alpha ,\beta &gt;2\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>&#x2212;<!-- --></mo>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>+</mo>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>+</mo>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>+</mo>
<mn>2</mn>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>+</mo>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<mo>+</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
<mo>+</mo>
<mn>2</mn>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>&#x2212;<!-- --></mo>
<msubsup>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msubsup>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</msub>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>&gt;</mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ,a,c))={}&amp;-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\beta }^{2}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\beta }^{2}\\&amp;{}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}+2{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}\\&amp;{}-2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,a}^{2}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}^{2}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,\beta }\\&amp;{}+2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }{\text{ if }}\alpha ,\beta &gt;2\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2736604fb3cf676756af731d77faaf9041e60ae9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -10.171ex; width:96.157ex; height:21.509ex;" alt="{\displaystyle {\begin{aligned}\det({\mathcal {I}}(\alpha ,\beta ,a,c))={}&amp;-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\beta }^{2}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\beta }^{2}\\&amp;{}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}+2{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}\\&amp;{}-2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,a}+{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,a}^{2}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}^{2}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{a,a}{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\alpha ,\beta }{\mathcal {I}}_{\beta ,c}\\&amp;{}-{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}+{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,a}{\mathcal {I}}_{\beta ,c}-{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,a}^{2}{\mathcal {I}}_{\beta ,\beta }\\&amp;{}+2{\mathcal {I}}_{a,c}{\mathcal {I}}_{\alpha ,a}{\mathcal {I}}_{\alpha ,c}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,a}{\mathcal {I}}_{\alpha ,c}^{2}{\mathcal {I}}_{\beta ,\beta }-{\mathcal {I}}_{a,c}^{2}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }+{\mathcal {I}}_{a,a}{\mathcal {I}}_{c,c}{\mathcal {I}}_{\alpha ,\alpha }{\mathcal {I}}_{\beta ,\beta }{\text{ if }}\alpha ,\beta &gt;2\end{aligned}}}"></span></dd></dl>
<p>Using <a href="/wiki/Sylvester%27s_criterion" title="Sylvester&#39;s criterion">Sylvester's criterion</a> (checking whether the diagonal elements are all positive), and since diagonal components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f278587aa7ba2520daa70abd786de17e083f9a99" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.764ex; height:2.843ex;" alt="{\mathcal{I}}_{a, a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{c,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{c,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d1fde4e1dff40eca80d1e1dd26147940f58b24" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:3.449ex; height:2.843ex;" alt="{\mathcal{I}}_{c, c}"></span> have <a href="/wiki/Mathematical_singularity" class="mw-redirect" title="Mathematical singularity">singularities</a> at α=2 and β=2 it follows that the Fisher information matrix for the four parameter case is <a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">positive-definite</a> for α&gt;2 and β&gt;2. Since for α &gt; 2 and β &gt; 2 the beta distribution is (symmetric or unsymmetric) bell shaped, it follows that the Fisher information matrix is positive-definite only for bell-shaped (symmetric or unsymmetric) beta distributions, with inflection points located to either side of the mode. Thus, important well known distributions belonging to the four-parameter beta distribution family, like the parabolic distribution (Beta(2,2,a,c)) and the <a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">uniform distribution</a> (Beta(1,1,a,c)) have Fisher information components (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {I}}_{a,a},{\mathcal {I}}_{c,c},{\mathcal {I}}_{\alpha ,a},{\mathcal {I}}_{\beta ,c}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>a</mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>c</mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>a</mi>
</mrow>
</msub>
<mo>,</mo>
<msub>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>c</mi>
</mrow>
</msub>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {I}}_{a,a},{\mathcal {I}}_{c,c},{\mathcal {I}}_{\alpha ,a},{\mathcal {I}}_{\beta ,c}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0efbfead578f297a9f2aa81caedf6c8066d5a0a0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.069ex; width:17.735ex; height:2.843ex;" alt="{\displaystyle {\mathcal {I}}_{a,a},{\mathcal {I}}_{c,c},{\mathcal {I}}_{\alpha ,a},{\mathcal {I}}_{\beta ,c}}"></span>) that blow up (approach infinity) in the four-parameter case (although their Fisher information components are all defined for the two parameter case). The four-parameter <a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle distribution</a> (Beta(3/2,3/2,<i>a</i>,<i>c</i>)) and <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a> (Beta(1/2,1/2,<i>a</i>,<i>c</i>)) have negative Fisher information determinants for the four-parameter case.
</p>
<h3><span class="mw-headline" id="Bayesian_inference">Bayesian inference</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=60" title="Edit section: Bayesian inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></div>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta(1,1)_Uniform_distribution_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png/220px-Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png/330px-Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png/440px-Beta%281%2C1%29_Uniform_distribution_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Beta(1,1)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>B</mi>
<mi>e</mi>
<mi>t</mi>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>,</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Beta(1,1)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc385b5aa92366df42c6b175833dd66518bcc5e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.085ex; height:2.843ex;" alt="{\displaystyle Beta(1,1)}"></span>: The <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> probability density was proposed by <a href="/wiki/Thomas_Bayes" title="Thomas Bayes">Thomas Bayes</a> to represent ignorance of prior probabilities in <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>.</figcaption></figure>
<p>The use of Beta distributions in <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a> is due to the fact that they provide a family of <a href="/wiki/Conjugate_prior_distribution" class="mw-redirect" title="Conjugate prior distribution">conjugate prior probability distributions</a> for <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial</a> (including <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a>) and <a href="/wiki/Geometric_distribution" title="Geometric distribution">geometric distributions</a>. The domain of the beta distribution can be viewed as a probability, and in fact the beta distribution is often used to describe the distribution of a probability value <i>p</i>:<sup id="cite_ref-MacKay_23-1" class="reference"><a href="#cite_note-MacKay-23">&#91;23&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(p;\alpha ,\beta )={\frac {p^{\alpha -1}(1-p)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>P</mi>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>p</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle P(p;\alpha ,\beta )={\frac {p^{\alpha -1}(1-p)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad22d0a4845670ac730383ed26b7028a9eec1314" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.003ex; height:6.676ex;" alt="P(p;\alpha,\beta) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{\Beta(\alpha,\beta)}."></span></dd></dl>
<p>Examples of beta distributions used as prior probabilities to represent ignorance of prior parameter values in Bayesian inference are Beta(1,1), Beta(0,0) and Beta(1/2,1/2).
</p>
<h4><span class="mw-headline" id="Rule_of_succession">Rule of succession</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=61" title="Edit section: Rule of succession"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Rule_of_succession" title="Rule of succession">Rule of succession</a></div>
<p>A classic application of the beta distribution is the <a href="/wiki/Rule_of_succession" title="Rule of succession">rule of succession</a>, introduced in the 18th century by <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a><sup id="cite_ref-Laplace_54-0" class="reference"><a href="#cite_note-Laplace-54">&#91;54&#93;</a></sup> in the course of treating the <a href="/wiki/Sunrise_problem" title="Sunrise problem">sunrise problem</a>. It states that, given <i>s</i> successes in <i>n</i> <a href="/wiki/Conditional_independence" title="Conditional independence">conditionally independent</a> <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trials</a> with probability <i>p,</i> that the estimate of the expected value in the next trial is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {s+1}{n+2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {s+1}{n+2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a520f64a100600a0356d2562721ad1f6c907f5b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.234ex; height:5.343ex;" alt="\frac{s+1}{n+2}"></span>. This estimate is the expected value of the posterior distribution over <i>p,</i> namely Beta(<i>s</i>+1, <i>n</i><i>s</i>+1), which is given by <a href="/wiki/Bayes%27_rule" class="mw-redirect" title="Bayes&#39; rule">Bayes' rule</a> if one assumes a uniform prior probability over <i>p</i> (i.e., Beta(1, 1)) and then observes that <i>p</i> generated <i>s</i> successes in <i>n</i> trials. Laplace's rule of succession has been criticized by prominent scientists. R. T. Cox described Laplace's application of the rule of succession to the <a href="/wiki/Sunrise_problem" title="Sunrise problem">sunrise problem</a> (<sup id="cite_ref-CoxRT_55-0" class="reference"><a href="#cite_note-CoxRT-55">&#91;55&#93;</a></sup> p.&#160;89) as "a travesty of the proper use of the principle". Keynes remarks (<sup id="cite_ref-KeynesTreatise_56-0" class="reference"><a href="#cite_note-KeynesTreatise-56">&#91;56&#93;</a></sup> Ch.XXX, p.&#160;382) "indeed this is so foolish a theorem that to entertain it is discreditable". Karl Pearson<sup id="cite_ref-PearsonRuleSuccession_57-0" class="reference"><a href="#cite_note-PearsonRuleSuccession-57">&#91;57&#93;</a></sup> showed that the probability that the next (<i>n</i>&#160;+&#160;1) trials will be successes, after n successes in n trials, is only 50%, which has been considered too low by scientists like Jeffreys and unacceptable as a representation of the scientific process of experimentation to test a proposed scientific law. As pointed out by Jeffreys (<sup id="cite_ref-Jeffreys_58-0" class="reference"><a href="#cite_note-Jeffreys-58">&#91;58&#93;</a></sup> p.&#160;128) (crediting <a href="/wiki/C._D._Broad" title="C. D. Broad">C. D. Broad</a><sup id="cite_ref-BroadMind_59-0" class="reference"><a href="#cite_note-BroadMind-59">&#91;59&#93;</a></sup> ) Laplace's rule of succession establishes a high probability of success ((n+1)/(n+2)) in the next trial, but only a moderate probability (50%) that a further sample (n+1) comparable in size will be equally successful. As pointed out by Perks,<sup id="cite_ref-Perks_60-0" class="reference"><a href="#cite_note-Perks-60">&#91;60&#93;</a></sup> "The rule of succession itself is hard to accept. It assigns a probability to the next trial which implies the assumption that the actual run observed is an average run and that we are always at the end of an average run. It would, one would think, be more reasonable to assume that we were in the middle of an average run. Clearly a higher value for both probabilities is necessary if they are to accord with reasonable belief." These problems with Laplace's rule of succession motivated Haldane, Perks, Jeffreys and others to search for other forms of prior probability (see the next <a href="#Bayesian_inference">§&#160;Bayesian inference</a>). According to Jaynes,<sup id="cite_ref-Jaynes_51-1" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup> the main problem with the rule of succession is that it is not valid when s=0 or s=n (see <a href="/wiki/Rule_of_succession" title="Rule of succession">rule of succession</a>, for an analysis of its validity).
</p>
<h4><span id="Bayes-Laplace_prior_probability_.28Beta.281.2C1.29.29"></span><span class="mw-headline" id="Bayes-Laplace_prior_probability_(Beta(1,1))">Bayes-Laplace prior probability (Beta(1,1))</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=62" title="Edit section: Bayes-Laplace prior probability (Beta(1,1))"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>The beta distribution achieves maximum differential entropy for Beta(1,1): the <a href="/wiki/Uniform_density" class="mw-redirect" title="Uniform density">uniform</a> probability density, for which all values in the domain of the distribution have equal density. This uniform distribution Beta(1,1) was suggested ("with a great deal of doubt") by <a href="/wiki/Thomas_Bayes" title="Thomas Bayes">Thomas Bayes</a><sup id="cite_ref-ThomasBayes_61-0" class="reference"><a href="#cite_note-ThomasBayes-61">&#91;61&#93;</a></sup> as the prior probability distribution to express ignorance about the correct prior distribution. This prior distribution was adopted (apparently, from his writings, with little sign of doubt<sup id="cite_ref-Laplace_54-1" class="reference"><a href="#cite_note-Laplace-54">&#91;54&#93;</a></sup>) by <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a>, and hence it was also known as the "Bayes-Laplace rule" or the "Laplace rule" of "<a href="/wiki/Inverse_probability" title="Inverse probability">inverse probability</a>" in publications of the first half of the 20th century. In the later part of the 19th century and early part of the 20th century, scientists realized that the assumption of uniform "equal" probability density depended on the actual functions (for example whether a linear or a logarithmic scale was most appropriate) and parametrizations used. In particular, the behavior near the ends of distributions with finite support (for example near <i>x</i> = 0, for a distribution with initial support at <i>x</i> = 0) required particular attention. Keynes (<sup id="cite_ref-KeynesTreatise_56-1" class="reference"><a href="#cite_note-KeynesTreatise-56">&#91;56&#93;</a></sup> Ch.XXX, p.&#160;381) criticized the use of Bayes's uniform prior probability (Beta(1,1)) that all values between zero and one are equiprobable, as follows: "Thus experience, if it shows anything, shows that there is a very marked clustering of statistical ratios in the neighborhoods of zero and unity, of those for positive theories and for correlations between positive qualities in the neighborhood of zero, and of those for negative theories and for correlations between negative qualities in the neighborhood of unity. "
</p>
<h4><span id="Haldane.27s_prior_probability_.28Beta.280.2C0.29.29"></span><span class="mw-headline" id="Haldane's_prior_probability_(Beta(0,0))"><span class="anchor" id="Haldane_prior"></span>Haldane's prior probability (Beta(0,0))</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=63" title="Edit section: Haldane&#039;s prior probability (Beta(0,0))"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png/220px-Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png/330px-Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png/440px-Beta_distribution_for_alpha_and_beta_approaching_zero_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Beta(0,0)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>B</mi>
<mi>e</mi>
<mi>t</mi>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>,</mo>
<mn>0</mn>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Beta(0,0)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b6c60512da3a9f0ea488c28d019448ba513cb1f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.085ex; height:2.843ex;" alt="{\displaystyle Beta(0,0)}"></span>: The Haldane prior probability expressing total ignorance about prior information, where we are not even sure whether it is physically possible for an experiment to yield either a success or a failure. As α, β → 0, the beta distribution approaches a two-point <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> with all probability density concentrated at each end, at 0 and 1, and nothing in between. A coin-toss: one face of the coin being at 0 and the other face being at 1.</figcaption></figure>
<p>The Beta(0,0) distribution was proposed by <a href="/wiki/J.B.S._Haldane" class="mw-redirect" title="J.B.S. Haldane">J.B.S. Haldane</a>,<sup id="cite_ref-62" class="reference"><a href="#cite_note-62">&#91;62&#93;</a></sup> who suggested that the prior probability representing complete uncertainty should be proportional to <i>p</i><sup>1</sup>(1<i>p</i>)<sup>1</sup>. The function <i>p</i><sup>1</sup>(1<i>p</i>)<sup>1</sup> can be viewed as the limit of the numerator of the beta distribution as both shape parameters approach zero: α, β → 0. The Beta function (in the denominator of the beta distribution) approaches infinity, for both parameters approaching zero, α, β → 0. Therefore, <i>p</i><sup>1</sup>(1<i>p</i>)<sup>1</sup> divided by the Beta function approaches a 2-point <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> with equal probability 1/2 at each end, at 0 and 1, and nothing in between, as α, β → 0. A coin-toss: one face of the coin being at 0 and the other face being at 1. The Haldane prior probability distribution Beta(0,0) is an "<a href="/wiki/Improper_prior" class="mw-redirect" title="Improper prior">improper prior</a>" because its integration (from 0 to 1) fails to strictly converge to 1 due to the singularities at each end. However, this is not an issue for computing posterior probabilities unless the sample size is very small. Furthermore, Zellner<sup id="cite_ref-Zellner_63-0" class="reference"><a href="#cite_note-Zellner-63">&#91;63&#93;</a></sup> points out that on the <a href="/wiki/Log-odds" class="mw-redirect" title="Log-odds">log-odds</a> scale, (the <a href="/wiki/Logit" title="Logit">logit</a> transformation ln(<i>p</i>/1<i>p</i>)), the Haldane prior is the uniformly flat prior. The fact that a uniform prior probability on the <a href="/wiki/Logit" title="Logit">logit</a> transformed variable ln(<i>p</i>/1<i>p</i>) (with domain (-∞, ∞)) is equivalent to the Haldane prior on the domain [0, 1] was pointed out by <a href="/wiki/Harold_Jeffreys" title="Harold Jeffreys">Harold Jeffreys</a> in the first edition (1939) of his book Theory of Probability (<sup id="cite_ref-Jeffreys_58-1" class="reference"><a href="#cite_note-Jeffreys-58">&#91;58&#93;</a></sup> p.&#160;123). Jeffreys writes "Certainly if we take the Bayes-Laplace rule right up to the extremes we are led to results that do not correspond to anybody's way of thinking. The (Haldane) rule d<i>x</i>/(<i>x</i>(1<i>x</i>)) goes too far the other way. It would lead to the conclusion that if a sample is of one type with respect to some property there is a probability 1 that the whole population is of that type." The fact that "uniform" depends on the parametrization, led Jeffreys to seek a form of prior that would be invariant under different parametrizations.
</p>
<h4><span id="Jeffreys.27_prior_probability_.28Beta.281.2F2.2C1.2F2.29_for_a_Bernoulli_or_for_a_binomial_distribution.29"></span><span class="mw-headline" id="Jeffreys'_prior_probability_(Beta(1/2,1/2)_for_a_Bernoulli_or_for_a_binomial_distribution)">Jeffreys' prior probability (Beta(1/2,1/2) for a Bernoulli or for a binomial distribution)</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=64" title="Edit section: Jeffreys&#039; prior probability (Beta(1/2,1/2) for a Bernoulli or for a binomial distribution)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a></div>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png/220px-Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png/330px-Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png/440px-Jeffreys_prior_probability_for_the_beta_distribution_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption><a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> probability for the beta distribution: the square root of the determinant of <a href="/wiki/Fisher%27s_information" class="mw-redirect" title="Fisher&#39;s information">Fisher's information</a> matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}={\sqrt {\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mstyle displaystyle="false" scriptlevel="1">
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mstyle>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}={\sqrt {\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2e6efbd72082ebee1c3de355648f844c92ffce8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:39.914ex; height:2.676ex;" alt="\scriptstyle\sqrt{\det(\mathcal{I}(\alpha, \beta))} = \sqrt{\psi_1(\alpha)\psi_1(\beta)-( \psi_1(\alpha)+\psi_1(\beta) )\psi_1(\alpha + \beta)}"></span> is a function of the <a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a> ψ<sub>1</sub> of shape parameters α, β</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png/220px-Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/33/Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png/330px-Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/33/Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png/440px-Beta_distribution_for_3_different_prior_probability_functions_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Posterior Beta densities with samples having success = "s", failure = "f" of <i>s</i>/(<i>s</i> + <i>f</i>) = 1/2, and <i>s</i> + <i>f</i> = {3,10,50}, based on 3 different prior probability functions: Haldane (Beta(0,0), Jeffreys (Beta(1/2,1/2)) and Bayes (Beta(1,1)). The image shows that there is little difference between the priors for the posterior with sample size of 50 (with more pronounced peak near <i>p</i>&#160;=&#160;1/2). Significant differences appear for very small sample sizes (the flatter distribution for sample size of&#160;3)</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_for_3_different_prior_probability_functions,_skewed_case_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png/220px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/49/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png/330px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/49/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png/440px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Posterior Beta densities with samples having success = "s", failure = "f" of <i>s</i>/(<i>s</i> + <i>f</i>) = 1/4, and <i>s</i> + <i>f</i> &#8712; {3,10,50}, based on three different prior probability functions: Haldane (Beta(0,0), Jeffreys (Beta(1/2,1/2)) and Bayes (Beta(1,1)). The image shows that there is little difference between the priors for the posterior with sample size of 50 (with more pronounced peak near <i>p</i> = 1/4). Significant differences appear for very small sample sizes (the very skewed distribution for the degenerate case of sample size&#160;=&#160;3, in this degenerate and unlikely case the Haldane prior results in a reverse "J" shape with mode at <i>p</i>&#160;=&#160;0 instead of <i>p</i>&#160;=&#160;1/4. If there is sufficient <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sampling data</a>, the three priors of Bayes (Beta(1,1)), Jeffreys (Beta(1/2,1/2)) and Haldane (Beta(0,0)) should yield similar <a href="/wiki/Posterior_probability" title="Posterior probability"><i>posterior</i> probability</a> densities.</figcaption></figure>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Beta_distribution_for_3_different_prior_probability_functions,_skewed_case_sample_size_%3D_(4,12,40)_-_J._Rodal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png/220px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png/330px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png/440px-Beta_distribution_for_3_different_prior_probability_functions%2C_skewed_case_sample_size_%3D_%284%2C12%2C40%29_-_J._Rodal.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Posterior Beta densities with samples having success = <i>s</i>, failure = <i>f</i> of <i>s</i>/(<i>s</i> + <i>f</i>) = 1/4, and <i>s</i> + <i>f</i> &#8712; {4,12,40}, based on three different prior probability functions: Haldane (Beta(0,0), Jeffreys (Beta(1/2,1/2)) and Bayes (Beta(1,1)). The image shows that there is little difference between the priors for the posterior with sample size of 40 (with more pronounced peak near <i>p</i>&#160;=&#160;1/4). Significant differences appear for very small sample sizes</figcaption></figure>
<p><a href="/wiki/Harold_Jeffreys" title="Harold Jeffreys">Harold Jeffreys</a><sup id="cite_ref-Jeffreys_58-2" class="reference"><a href="#cite_note-Jeffreys-58">&#91;58&#93;</a></sup><sup id="cite_ref-JeffreysPRIOR_64-0" class="reference"><a href="#cite_note-JeffreysPRIOR-64">&#91;64&#93;</a></sup> proposed to use an <a href="/wiki/Uninformative_prior" class="mw-redirect" title="Uninformative prior">uninformative prior</a> probability measure that should be <a href="/wiki/Parametrization_invariance" class="mw-redirect" title="Parametrization invariance">invariant under reparameterization</a>: proportional to the square root of the <a href="/wiki/Determinant" title="Determinant">determinant</a> of <a href="/wiki/Fisher%27s_information" class="mw-redirect" title="Fisher&#39;s information">Fisher's information</a> matrix. For the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a>, this can be shown as follows: for a coin that is "heads" with probability <i>p</i> ∈ [0, 1] and is "tails" with probability 1 <i>p</i>, for a given (H,T) ∈ {(0,1), (1,0)} the probability is <i>p<sup>H</sup></i>(1 <i>p</i>)<sup><i>T</i></sup>. Since <i>T</i> = 1 <i>H</i>, the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a> is <i>p<sup>H</sup></i>(1 <i>p</i>)<sup>1 <i>H</i></sup>. Considering <i>p</i> as the only parameter, it follows that the log likelihood for the Bernoulli distribution is
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln {\mathcal {L}}(p\mid H)=H\ln(p)+(1-H)\ln(1-p).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>&#x2223;<!-- --></mo>
<mi>H</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>H</mi>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>H</mi>
<mo stretchy="false">)</mo>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \ln {\mathcal {L}}(p\mid H)=H\ln(p)+(1-H)\ln(1-p).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69f6ab64079b29b57770dca094598d10e2fb41a2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.048ex; height:2.843ex;" alt="{\displaystyle \ln {\mathcal {L}}(p\mid H)=H\ln(p)+(1-H)\ln(1-p).}"></span></dd></dl>
<p>The Fisher information matrix has only one component (it is a scalar, because there is only one parameter: <i>p</i>), therefore:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\sqrt {{\mathcal {I}}(p)}}&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {d}{dp}}\ln({\mathcal {L}}(p\mid H))\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {H}{p}}-{\frac {1-H}{1-p}}\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {p^{1}(1-p)^{0}\left({\frac {1}{p}}-{\frac {0}{1-p}}\right)^{2}+p^{0}(1-p)^{1}\left({\frac {0}{p}}-{\frac {1}{1-p}}\right)^{2}}}\\&amp;={\frac {1}{\sqrt {p(1-p)}}}.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi mathvariant="normal">E</mi>
<mspace width="negativethinmathspace" />
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>d</mi>
<mrow>
<mi>d</mi>
<mi>p</mi>
</mrow>
</mfrac>
</mrow>
<mi>ln</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>&#x2223;<!-- --></mo>
<mi>H</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
</msqrt>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi mathvariant="normal">E</mi>
<mspace width="negativethinmathspace" />
<mrow>
<mo>[</mo>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>H</mi>
<mi>p</mi>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>H</mi>
</mrow>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>]</mo>
</mrow>
</msqrt>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<msup>
<mi>p</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mi>p</mi>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>0</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
<mo>+</mo>
<msup>
<mi>p</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msup>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>0</mn>
<mi>p</mi>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
</mrow>
</mfrac>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</msqrt>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd />
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\sqrt {{\mathcal {I}}(p)}}&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {d}{dp}}\ln({\mathcal {L}}(p\mid H))\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {H}{p}}-{\frac {1-H}{1-p}}\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {p^{1}(1-p)^{0}\left({\frac {1}{p}}-{\frac {0}{1-p}}\right)^{2}+p^{0}(1-p)^{1}\left({\frac {0}{p}}-{\frac {1}{1-p}}\right)^{2}}}\\&amp;={\frac {1}{\sqrt {p(1-p)}}}.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324e2e5a963eed1652cf2d3a9ba95e5491b5df95" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -16.1ex; margin-bottom: -0.238ex; width:66.987ex; height:33.843ex;" alt="{\displaystyle {\begin{aligned}{\sqrt {{\mathcal {I}}(p)}}&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {d}{dp}}\ln({\mathcal {L}}(p\mid H))\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {\operatorname {E} \!\left[\left({\frac {H}{p}}-{\frac {1-H}{1-p}}\right)^{2}\right]}}\\[6pt]&amp;={\sqrt {p^{1}(1-p)^{0}\left({\frac {1}{p}}-{\frac {0}{1-p}}\right)^{2}+p^{0}(1-p)^{1}\left({\frac {0}{p}}-{\frac {1}{1-p}}\right)^{2}}}\\&amp;={\frac {1}{\sqrt {p(1-p)}}}.\end{aligned}}}"></span></dd></dl>
<p>Similarly, for the <a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a> with <i>n</i> <a href="/wiki/Bernoulli_trials" class="mw-redirect" title="Bernoulli trials">Bernoulli trials</a>, it can be shown that
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {{\mathcal {I}}(p)}}={\frac {\sqrt {n}}{\sqrt {p(1-p)}}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<msqrt>
<mi>n</mi>
</msqrt>
<msqrt>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\sqrt {{\mathcal {I}}(p)}}={\frac {\sqrt {n}}{\sqrt {p(1-p)}}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b9c7fb35f93662c41c611189306200b34b2552c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.851ex; height:7.176ex;" alt="\sqrt{\mathcal{I}(p)}= \frac{\sqrt{n}}{\sqrt{p(1-p)}}."></span></dd></dl>
<p>Thus, for the <a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a>, and <a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distributions</a>, <a href="/wiki/Jeffreys_prior" title="Jeffreys prior">Jeffreys prior</a> is proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {p(1-p)}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mstyle displaystyle="false" scriptlevel="1">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
</mstyle>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{\sqrt {p(1-p)}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42c718aec7a9fce451ad65deb17197b0d516c56" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.257ex; height:4.843ex;" alt="\scriptstyle \frac{1}{\sqrt{p(1-p)}}"></span>, which happens to be proportional to a beta distribution with domain variable <i>x</i> = <i>p</i>, and shape parameters α = β = 1/2, the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Beta({\tfrac {1}{2}},{\tfrac {1}{2}})={\frac {1}{\pi {\sqrt {p(1-p)}}}}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>B</mi>
<mi>e</mi>
<mi>t</mi>
<mi>a</mi>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mi>&#x03C0;<!-- π --></mi>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Beta({\tfrac {1}{2}},{\tfrac {1}{2}})={\frac {1}{\pi {\sqrt {p(1-p)}}}}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/049def27ded2d592df1bdd932f9a6253d3b0e0d2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.465ex; height:6.509ex;" alt="{\displaystyle Beta({\tfrac {1}{2}},{\tfrac {1}{2}})={\frac {1}{\pi {\sqrt {p(1-p)}}}}.}"></span></dd></dl>
<p>It will be shown in the next section that the normalizing constant for Jeffreys prior is immaterial to the final result because the normalizing constant cancels out in Bayes theorem for the posterior probability. Hence Beta(1/2,1/2) is used as the Jeffreys prior for both Bernoulli and binomial distributions. As shown in the next section, when using this expression as a prior probability times the likelihood in <a href="/wiki/Bayes_theorem" class="mw-redirect" title="Bayes theorem">Bayes theorem</a>, the posterior probability turns out to be a beta distribution. It is important to realize, however, that Jeffreys prior is proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {p(1-p)}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mstyle displaystyle="false" scriptlevel="1">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mi>p</mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
</mstyle>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\frac {1}{\sqrt {p(1-p)}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42c718aec7a9fce451ad65deb17197b0d516c56" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.257ex; height:4.843ex;" alt="\scriptstyle \frac{1}{\sqrt{p(1-p)}}"></span> for the Bernoulli and binomial distribution, but not for the beta distribution. Jeffreys prior for the beta distribution is given by the determinant of Fisher's information for the beta distribution, which, as shown in the <a href="#Fisher_information_matrix">§&#160;Fisher information matrix</a> is a function of the <a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a> ψ<sub>1</sub> of shape parameters α and β as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;={\sqrt {\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )}}\\\lim _{\alpha \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=\infty \\\lim _{\alpha \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=0\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>&#x2212;<!-- --></mo>
<mo stretchy="false">(</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
<msub>
<mi>&#x03C8;<!-- ψ --></mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msub>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mn>0</mn>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
<mo>=</mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mtd>
</mtr>
<mtr>
<mtd>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<munder>
<mo movablelimits="true" form="prefix">lim</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">&#x2192;<!-- → --></mo>
<mi mathvariant="normal">&#x221E;<!-- ∞ --></mi>
</mrow>
</munder>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mo movablelimits="true" form="prefix">det</mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">I</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;={\sqrt {\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )}}\\\lim _{\alpha \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=\infty \\\lim _{\alpha \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=0\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07c5b390f9d9ecda1e940272b7746e29edcb4bc3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:66.09ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;={\sqrt {\psi _{1}(\alpha )\psi _{1}(\beta )-(\psi _{1}(\alpha )+\psi _{1}(\beta ))\psi _{1}(\alpha +\beta )}}\\\lim _{\alpha \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to 0}{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=\infty \\\lim _{\alpha \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}&amp;=\lim _{\beta \to \infty }{\sqrt {\det({\mathcal {I}}(\alpha ,\beta ))}}=0\end{aligned}}}"></span></dd></dl>
<p>As previously discussed, Jeffreys prior for the Bernoulli and binomial distributions is proportional to the <a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine distribution</a> Beta(1/2,1/2), a one-dimensional <i>curve</i> that looks like a basin as a function of the parameter <i>p</i> of the Bernoulli and binomial distributions. The walls of the basin are formed by <i>p</i> approaching the singularities at the ends <i>p</i> → 0 and <i>p</i> → 1, where Beta(1/2,1/2) approaches infinity. Jeffreys prior for the beta distribution is a <i>2-dimensional surface</i> (embedded in a three-dimensional space) that looks like a basin with only two of its walls meeting at the corner α = β = 0 (and missing the other two walls) as a function of the shape parameters α and β of the beta distribution. The two adjoining walls of this 2-dimensional surface are formed by the shape parameters α and β approaching the singularities (of the trigamma function) at α, β → 0. It has no walls for α, β → ∞ because in this case the determinant of Fisher's information matrix for the beta distribution approaches zero.
</p><p>It will be shown in the next section that Jeffreys prior probability results in posterior probabilities (when multiplied by the binomial likelihood function) that are intermediate between the posterior probability results of the Haldane and Bayes prior probabilities.
</p><p>Jeffreys prior may be difficult to obtain analytically, and for some cases it just doesn't exist (even for simple distribution functions like the asymmetric <a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a>). Berger, Bernardo and Sun, in a 2009 paper<sup id="cite_ref-BergerBernardoSun_65-0" class="reference"><a href="#cite_note-BergerBernardoSun-65">&#91;65&#93;</a></sup> defined a reference prior probability distribution that (unlike Jeffreys prior) exists for the asymmetric <a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a>. They cannot obtain a closed-form expression for their reference prior, but numerical calculations show it to be nearly perfectly fitted by the (proper) prior
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Beta} ({\tfrac {1}{2}},{\tfrac {1}{2}})\sim {\frac {1}{\sqrt {\theta (1-\theta )}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {Beta} ({\tfrac {1}{2}},{\tfrac {1}{2}})\sim {\frac {1}{\sqrt {\theta (1-\theta )}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48f294007f1cccbad01219b7034dd9156ad4c18e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:25.156ex; height:6.509ex;" alt="{\displaystyle \operatorname {Beta} ({\tfrac {1}{2}},{\tfrac {1}{2}})\sim {\frac {1}{\sqrt {\theta (1-\theta )}}}}"></span></dd></dl>
<p>where θ is the vertex variable for the asymmetric triangular distribution with support [0, 1] (corresponding to the following parameter values in Wikipedia's article on the <a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a>: vertex <i>c</i> = <i>θ</i>, left end <i>a</i> = 0,and right end <i>b</i> = 1). Berger et al. also give a heuristic argument that Beta(1/2,1/2) could indeed be the exact BergerBernardoSun reference prior for the asymmetric triangular distribution. Therefore, Beta(1/2,1/2) not only is Jeffreys prior for the Bernoulli and binomial distributions, but also seems to be the BergerBernardoSun reference prior for the asymmetric triangular distribution (for which the Jeffreys prior does not exist), a distribution used in project management and <a href="/wiki/PERT" class="mw-redirect" title="PERT">PERT</a> analysis to describe the cost and duration of project tasks.
</p><p>Clarke and Barron<sup id="cite_ref-66" class="reference"><a href="#cite_note-66">&#91;66&#93;</a></sup> prove that, among continuous positive priors, Jeffreys prior (when it exists) asymptotically maximizes Shannon's <a href="/wiki/Mutual_information" title="Mutual information">mutual information</a> between a sample of size n and the parameter, and therefore <i>Jeffreys prior is the most uninformative prior</i> (measuring information as Shannon information). The proof rests on an examination of the <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="KullbackLeibler divergence">KullbackLeibler divergence</a> between probability density functions for <a href="/wiki/Iid" class="mw-redirect" title="Iid">iid</a> random variables.
</p>
<h4><span class="mw-headline" id="Effect_of_different_prior_probability_choices_on_the_posterior_beta_distribution">Effect of different prior probability choices on the posterior beta distribution</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=65" title="Edit section: Effect of different prior probability choices on the posterior beta distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h4>
<p>If samples are drawn from the population of a random variable <i>X</i> that result in <i>s</i> successes and <i>f</i> failures in "n" <a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trials</a> <i>n</i>&#160;=&#160;<i>s</i>&#160;+&#160;<i>f</i>, then the <a href="/wiki/Likelihood_function" title="Likelihood function">likelihood function</a> for parameters <i>s</i> and <i>f</i> given <i>x</i>&#160;=&#160;<i>p</i> (the notation <i>x</i>&#160;=&#160;<i>p</i> in the expressions below will emphasize that the domain <i>x</i> stands for the value of the parameter <i>p</i> in the binomial distribution), is the following <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}(s,f\mid x=p)={s+f \choose s}x^{s}(1-x)^{f}={n \choose s}x^{s}(1-x)^{n-s}.}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo>&#x2223;<!-- --></mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
<mfrac linethickness="0">
<mrow>
<mi>s</mi>
<mo>+</mo>
<mi>f</mi>
</mrow>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>f</mi>
</mrow>
</msup>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
<mfrac linethickness="0">
<mi>n</mi>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
</mrow>
</msup>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}(s,f\mid x=p)={s+f \choose s}x^{s}(1-x)^{f}={n \choose s}x^{s}(1-x)^{n-s}.}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/666e972b7052ad62f6852366654b0aa56a1a4933" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:57.995ex; height:6.176ex;" alt="{\displaystyle {\mathcal {L}}(s,f\mid x=p)={s+f \choose s}x^{s}(1-x)^{f}={n \choose s}x^{s}(1-x)^{n-s}.}"></span></dd></dl>
<p>If beliefs about <a href="/wiki/Prior_probability" title="Prior probability">prior probability</a> information are reasonably well approximated by a beta distribution with parameters <i>α</i>&#160;Prior and <i>β</i>&#160;Prior, then:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\operatorname {PriorProbability} }(x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )={\frac {x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}{\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi>PriorProbability</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\operatorname {PriorProbability} }(x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )={\frac {x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}{\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1f1fc91d398fc32f6c45a16e039b093b3b4cdd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:68.181ex; height:6.676ex;" alt="{\displaystyle {\operatorname {PriorProbability} }(x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )={\frac {x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}{\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}}}"></span></dd></dl>
<p>According to <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a> for a continuous event space, the <a href="/wiki/Posterior_probability" title="Posterior probability">posterior probability</a> is given by the product of the <a href="/wiki/Prior_probability" title="Prior probability">prior probability</a> and the likelihood function (given the evidence <i>s</i> and <i>f</i>&#160;=&#160;<i>n</i>&#160;&#160;<i>s</i>), normalized so that the area under the curve equals one, as follows:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\operatorname {posteriorprobability} (x=p\mid s,n-s)\\[6pt]={}&amp;{\frac {\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)}{\int _{0}^{1}\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)dx}}\\[6pt]={}&amp;{\frac {{n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}{\int _{0}^{1}\left({n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\int _{0}^{1}\left(x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\mathrm {B} (s+\alpha \operatorname {Prior} ,n-s+\beta \operatorname {Prior} )}}.\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd />
<mtd>
<mi>posteriorprobability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo>&#x2223;<!-- --></mo>
<mi>s</mi>
<mo>,</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
</mtd>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>PriorProbability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo>&#x2223;<!-- --></mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mi>PriorProbability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo>;</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi class="MJX-tex-caligraphic" mathvariant="script">L</mi>
</mrow>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo>&#x2223;<!-- --></mo>
<mi>x</mi>
<mo>=</mo>
<mi>p</mi>
<mo stretchy="false">)</mo>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
</mtd>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="1.2em" minsize="1.2em">(</mo>
</mrow>
<mfrac linethickness="0">
<mi>n</mi>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="1.2em" minsize="1.2em">)</mo>
</mrow>
</mrow>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="1.2em" minsize="1.2em">(</mo>
</mrow>
<mfrac linethickness="0">
<mi>n</mi>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="1.2em" minsize="1.2em">)</mo>
</mrow>
</mrow>
</mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
</mtd>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<msubsup>
<mo>&#x222B;<!-- ∫ --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>0</mn>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mn>1</mn>
</mrow>
</msubsup>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo>)</mo>
</mrow>
<mi>d</mi>
<mi>x</mi>
</mrow>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
</mrow>
</mtd>
<mtd>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>,</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>.</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\operatorname {posteriorprobability} (x=p\mid s,n-s)\\[6pt]={}&amp;{\frac {\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)}{\int _{0}^{1}\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)dx}}\\[6pt]={}&amp;{\frac {{n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}{\int _{0}^{1}\left({n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\int _{0}^{1}\left(x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\mathrm {B} (s+\alpha \operatorname {Prior} ,n-s+\beta \operatorname {Prior} )}}.\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3604b1c47e226d5ce09894b1a3b372fba8c9f8a3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -18.671ex; width:65.27ex; height:38.509ex;" alt="{\displaystyle {\begin{aligned}&amp;\operatorname {posteriorprobability} (x=p\mid s,n-s)\\[6pt]={}&amp;{\frac {\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)}{\int _{0}^{1}\operatorname {PriorProbability} (x=p;\alpha \operatorname {Prior} ,\beta \operatorname {Prior} ){\mathcal {L}}(s,f\mid x=p)dx}}\\[6pt]={}&amp;{\frac {{n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )}{\int _{0}^{1}\left({n \choose s}x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}/\mathrm {B} (\alpha \operatorname {Prior} ,\beta \operatorname {Prior} )\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\int _{0}^{1}\left(x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}\right)dx}}\\[6pt]={}&amp;{\frac {x^{s+\alpha \operatorname {Prior} -1}(1-x)^{n-s+\beta \operatorname {Prior} -1}}{\mathrm {B} (s+\alpha \operatorname {Prior} ,n-s+\beta \operatorname {Prior} )}}.\end{aligned}}}"></span></dd></dl>
<p>The <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {s+f \choose s}={n \choose s}={\frac {(s+f)!}{s!f!}}={\frac {n!}{s!(n-s)!}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
<mfrac linethickness="0">
<mrow>
<mi>s</mi>
<mo>+</mo>
<mi>f</mi>
</mrow>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mrow class="MJX-TeXAtom-OPEN">
<mo maxsize="2.047em" minsize="2.047em">(</mo>
</mrow>
<mfrac linethickness="0">
<mi>n</mi>
<mi>s</mi>
</mfrac>
<mrow class="MJX-TeXAtom-CLOSE">
<mo maxsize="2.047em" minsize="2.047em">)</mo>
</mrow>
</mrow>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
<mrow>
<mi>s</mi>
<mo>!</mo>
<mi>f</mi>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>n</mi>
<mo>!</mo>
</mrow>
<mrow>
<mi>s</mi>
<mo>!</mo>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
<mo>!</mo>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {s+f \choose s}={n \choose s}={\frac {(s+f)!}{s!f!}}={\frac {n!}{s!(n-s)!}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bb56b3dc1365cfbe97c5e0f873d573c01086980" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.599ex; height:6.509ex;" alt="{s+f \choose s}={n \choose s}=\frac{(s+f)!}{s! f!}=\frac{n!}{s!(n-s)!}"></span></dd></dl>
<p>appears both in the numerator and the denominator of the posterior probability, and it does not depend on the integration variable <i>x</i>, hence it cancels out, and it is irrelevant to the final result. Similarly the normalizing factor for the prior probability, the beta function B(αPrior,βPrior) cancels out and it is immaterial to the final result. The same posterior probability result can be obtained if one uses an un-normalized prior
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B1;<!-- α --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>&#x03B2;<!-- β --></mi>
<mi>Prior</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b25e3df767077ffed24923178ee4929cda3a4e64" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.055ex; height:3.176ex;" alt="{\displaystyle x^{\alpha \operatorname {Prior} -1}(1-x)^{\beta \operatorname {Prior} -1}}"></span></dd></dl>
<p>because the normalizing factors all cancel out. Several authors (including Jeffreys himself) thus use an un-normalized prior formula since the normalization constant cancels out. The numerator of the posterior probability ends up being just the (un-normalized) product of the prior probability and the likelihood function, and the denominator is its integral from zero to one. The beta function in the denominator, B(<i>s</i>&#160;+&#160;<i>α</i>&#160;Prior,&#160;<i>n</i>&#160;&#160;<i>s</i>&#160;+&#160;<i>β</i>&#160;Prior), appears as a normalization constant to ensure that the total posterior probability integrates to unity.
</p><p>The ratio <i>s</i>/<i>n</i> of the number of successes to the total number of trials is a <a href="/wiki/Sufficient_statistic" title="Sufficient statistic">sufficient statistic</a> in the binomial case, which is relevant for the following results.
</p><p>For the <b>Bayes'</b> prior probability (Beta(1,1)), the posterior probability is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s}(1-x)^{n-s}}{\mathrm {B} (s+1,n-s+1)}},{\text{ with mean }}={\frac {s+1}{n+2}},{\text{ (and mode }}={\frac {s}{n}}{\text{ if }}0&lt;s&lt;n).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>posteriorprobability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mi>x</mi>
<mo>&#x2223;<!-- --></mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
<mo>,</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;with mean&#xA0;</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;(and mode&#xA0;</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>s</mi>
<mi>n</mi>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mn>0</mn>
<mo>&lt;</mo>
<mi>s</mi>
<mo>&lt;</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s}(1-x)^{n-s}}{\mathrm {B} (s+1,n-s+1)}},{\text{ with mean }}={\frac {s+1}{n+2}},{\text{ (and mode }}={\frac {s}{n}}{\text{ if }}0&lt;s&lt;n).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2688a39dac3ace822500213d5fef25ba31dd207d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:109.87ex; height:6.509ex;" alt="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s}(1-x)^{n-s}}{\mathrm {B} (s+1,n-s+1)}},{\text{ with mean }}={\frac {s+1}{n+2}},{\text{ (and mode }}={\frac {s}{n}}{\text{ if }}0&lt;s&lt;n).}"></span></dd></dl>
<p>For the <b>Jeffreys'</b> prior probability (Beta(1/2,1/2)), the posterior probability is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={x^{s-{\tfrac {1}{2}}}(1-x)^{n-s-{\frac {1}{2}}} \over \mathrm {B} (s+{\tfrac {1}{2}},n-s+{\tfrac {1}{2}})},{\text{ with mean }}={\frac {s+{\tfrac {1}{2}}}{n+1}},{\text{ (and mode= }}{\frac {s-{\tfrac {1}{2}}}{n-1}}{\text{ if }}{\tfrac {1}{2}}&lt;s&lt;n-{\tfrac {1}{2}}).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>posteriorprobability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mi>x</mi>
<mo>&#x2223;<!-- --></mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>,</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;with mean&#xA0;</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>s</mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mrow>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;(and mode=&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
</mrow>
<mrow>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo>&lt;</mo>
<mi>s</mi>
<mo>&lt;</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="false" scriptlevel="0">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mstyle>
</mrow>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={x^{s-{\tfrac {1}{2}}}(1-x)^{n-s-{\frac {1}{2}}} \over \mathrm {B} (s+{\tfrac {1}{2}},n-s+{\tfrac {1}{2}})},{\text{ with mean }}={\frac {s+{\tfrac {1}{2}}}{n+1}},{\text{ (and mode= }}{\frac {s-{\tfrac {1}{2}}}{n-1}}{\text{ if }}{\tfrac {1}{2}}&lt;s&lt;n-{\tfrac {1}{2}}).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb2c39e338fa77ca9f635bc6890767d5deeff97c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:118.95ex; height:8.676ex;" alt="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={x^{s-{\tfrac {1}{2}}}(1-x)^{n-s-{\frac {1}{2}}} \over \mathrm {B} (s+{\tfrac {1}{2}},n-s+{\tfrac {1}{2}})},{\text{ with mean }}={\frac {s+{\tfrac {1}{2}}}{n+1}},{\text{ (and mode= }}{\frac {s-{\tfrac {1}{2}}}{n-1}}{\text{ if }}{\tfrac {1}{2}}&lt;s&lt;n-{\tfrac {1}{2}}).}"></span></dd></dl>
<p>and for the <b>Haldane</b> prior probability (Beta(0,0)), the posterior probability is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s-1}(1-x)^{n-s-1}}{\mathrm {B} (s,n-s)}},{\text{ with mean}}={\frac {s}{n}},{\text{ (and mode= }}{\frac {s-1}{n-2}}{\text{ if }}1&lt;s&lt;n-1).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>posteriorprobability</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>p</mi>
<mo>=</mo>
<mi>x</mi>
<mo>&#x2223;<!-- --></mo>
<mi>s</mi>
<mo>,</mo>
<mi>f</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<msup>
<mi>x</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>x</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>,</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;with mean</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>s</mi>
<mi>n</mi>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;(and mode=&#xA0;</mtext>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>s</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<mrow>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mn>2</mn>
</mrow>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;if&#xA0;</mtext>
</mrow>
<mn>1</mn>
<mo>&lt;</mo>
<mi>s</mi>
<mo>&lt;</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s-1}(1-x)^{n-s-1}}{\mathrm {B} (s,n-s)}},{\text{ with mean}}={\frac {s}{n}},{\text{ (and mode= }}{\frac {s-1}{n-2}}{\text{ if }}1&lt;s&lt;n-1).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0904fae27dc7bcda80a39c942f5fd776d1d2d138" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:110.035ex; height:6.676ex;" alt="{\displaystyle \operatorname {posteriorprobability} (p=x\mid s,f)={\frac {x^{s-1}(1-x)^{n-s-1}}{\mathrm {B} (s,n-s)}},{\text{ with mean}}={\frac {s}{n}},{\text{ (and mode= }}{\frac {s-1}{n-2}}{\text{ if }}1&lt;s&lt;n-1).}"></span></dd></dl>
<p>From the above expressions it follows that for <i>s</i>/<i>n</i>&#160;=&#160;1/2) all the above three prior probabilities result in the identical location for the posterior probability mean&#160;=&#160;mode&#160;=&#160;1/2. For <i>s</i>/<i>n</i>&#160;&lt;&#160;1/2, the mean of the posterior probabilities, using the following priors, are such that: mean for Bayes prior &gt;&#160;mean for Jeffreys prior &gt;&#160;mean for Haldane prior. For <i>s</i>/<i>n</i>&#160;&gt;&#160;1/2 the order of these inequalities is reversed such that the Haldane prior probability results in the largest posterior mean. The <i>Haldane</i> prior probability Beta(0,0) results in a posterior probability density with <i>mean</i> (the expected value for the probability of success in the "next" trial) identical to the ratio <i>s</i>/<i>n</i> of the number of successes to the total number of trials. Therefore, the Haldane prior results in a posterior probability with expected value in the next trial equal to the maximum likelihood. The <i>Bayes</i> prior probability Beta(1,1) results in a posterior probability density with <i>mode</i> identical to the ratio <i>s</i>/<i>n</i> (the maximum likelihood).
</p><p>In the case that 100% of the trials have been successful <i>s</i>&#160;=&#160;<i>n</i>, the <i>Bayes</i> prior probability Beta(1,1) results in a posterior expected value equal to the rule of succession (<i>n</i>&#160;+&#160;1)/(<i>n</i>&#160;+&#160;2), while the Haldane prior Beta(0,0) results in a posterior expected value of 1 (absolute certainty of success in the next trial). Jeffreys prior probability results in a posterior expected value equal to (<i>n</i>&#160;+&#160;1/2)/(<i>n</i>&#160;+&#160;1). Perks<sup id="cite_ref-Perks_60-1" class="reference"><a href="#cite_note-Perks-60">&#91;60&#93;</a></sup> (p.&#160;303) points out: "This provides a new rule of succession and expresses a 'reasonable' position to take up, namely, that after an unbroken run of n successes we assume a probability for the next trial equivalent to the assumption that we are about half-way through an average run, i.e. that we expect a failure once in (2<i>n</i>&#160;+&#160;2) trials. The BayesLaplace rule implies that we are about at the end of an average run or that we expect a failure once in (<i>n</i>&#160;+&#160;2) trials. The comparison clearly favours the new result (what is now called Jeffreys prior) from the point of view of 'reasonableness'."
</p><p>Conversely, in the case that 100% of the trials have resulted in failure (<i>s</i>&#160;=&#160;0), the <i>Bayes</i> prior probability Beta(1,1) results in a posterior expected value for success in the next trial equal to 1/(<i>n</i>&#160;+&#160;2), while the Haldane prior Beta(0,0) results in a posterior expected value of success in the next trial of 0 (absolute certainty of failure in the next trial). Jeffreys prior probability results in a posterior expected value for success in the next trial equal to (1/2)/(<i>n</i>&#160;+&#160;1), which Perks<sup id="cite_ref-Perks_60-2" class="reference"><a href="#cite_note-Perks-60">&#91;60&#93;</a></sup> (p.&#160;303) points out: "is a much more reasonably remote result than the Bayes-Laplace result&#160;1/(<i>n</i>&#160;+&#160;2)".
</p><p>Jaynes<sup id="cite_ref-Jaynes_51-2" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup> questions (for the uniform prior Beta(1,1)) the use of these formulas for the cases <i>s</i>&#160;=&#160;0 or <i>s</i>&#160;=&#160;<i>n</i> because the integrals do not converge (Beta(1,1) is an improper prior for <i>s</i>&#160;=&#160;0 or <i>s</i>&#160;=&#160;<i>n</i>). In practice, the conditions 0&lt;s&lt;n necessary for a mode to exist between both ends for the Bayes prior are usually met, and therefore the Bayes prior (as long as 0&#160;&lt;&#160;<i>s</i>&#160;&lt;&#160;<i>n</i>) results in a posterior mode located between both ends of the domain.
</p><p>As remarked in the section on the rule of succession, K. Pearson showed that after n successes in n trials the posterior probability (based on the Bayes Beta(1,1) distribution as the prior probability) that the next (<i>n</i>&#160;+&#160;1) trials will all be successes is exactly 1/2, whatever the value of&#160;<i>n</i>. Based on the Haldane Beta(0,0) distribution as the prior probability, this posterior probability is 1 (absolute certainty that after n successes in <i>n</i> trials the next (<i>n</i>&#160;+&#160;1) trials will all be successes). Perks<sup id="cite_ref-Perks_60-3" class="reference"><a href="#cite_note-Perks-60">&#91;60&#93;</a></sup> (p.&#160;303) shows that, for what is now known as the Jeffreys prior, this probability is ((<i>n</i>&#160;+&#160;1/2)/(<i>n</i>&#160;+&#160;1))((<i>n</i>&#160;+&#160;3/2)/(<i>n</i>&#160;+&#160;2))...(2<i>n</i>&#160;+&#160;1/2)/(2<i>n</i>&#160;+&#160;1), which for <i>n</i>&#160;=&#160;1,&#160;2,&#160;3 gives 15/24, 315/480, 9009/13440; rapidly approaching a limiting value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/{\sqrt {2}}=0.70710678\ldots }">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>1</mn>
<mrow class="MJX-TeXAtom-ORD">
<mo>/</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
<mo>=</mo>
<mn>0.70710678</mn>
<mo>&#x2026;<!-- … --></mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 1/{\sqrt {2}}=0.70710678\ldots }</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d8b88897e116bacec037ef4ef4711a4ce0305bd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.741ex; height:3.176ex;" alt="{\displaystyle 1/{\sqrt {2}}=0.70710678\ldots }"></span> as n tends to infinity. Perks remarks that what is now known as the Jeffreys prior: "is clearly more 'reasonable' than either the Bayes-Laplace result or the result on the (Haldane) alternative rule rejected by Jeffreys which gives certainty as the probability. It clearly provides a very much better correspondence with the process of induction. Whether it is 'absolutely' reasonable for the purpose, i.e. whether it is yet large enough, without the absurdity of reaching unity, is a matter for others to decide. But it must be realized that the result depends on the assumption of complete indifference and absence of knowledge prior to the sampling experiment."
</p><p>Following are the variances of the posterior distribution obtained with these three prior probability distributions:
</p><p>for the <b>Bayes'</b> prior probability (Beta(1,1)), the posterior variance is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{variance}}={\frac {(n-s+1)(s+1)}{(3+n)(2+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{12+4n}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>+</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>n</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;which for&#xA0;</mtext>
</mrow>
<mi>s</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>n</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;results in variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>12</mn>
<mo>+</mo>
<mn>4</mn>
<mi>n</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{variance}}={\frac {(n-s+1)(s+1)}{(3+n)(2+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{12+4n}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8b0a181eec5d97c53b6a05b2f88aa63372e0cb2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:78.794ex; height:6.509ex;" alt="{\displaystyle {\text{variance}}={\frac {(n-s+1)(s+1)}{(3+n)(2+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{12+4n}}}"></span></dd></dl>
<p>for the <b>Jeffreys'</b> prior probability (Beta(1/2,1/2)), the posterior variance is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{variance}}={\frac {(n-s+{\frac {1}{2}})(s+{\frac {1}{2}})}{(2+n)(1+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in var}}={\frac {1}{8+4n}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>2</mn>
<mo>+</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>n</mi>
<msup>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;which for&#xA0;</mtext>
</mrow>
<mi>s</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>n</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;results in var</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>8</mn>
<mo>+</mo>
<mn>4</mn>
<mi>n</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{variance}}={\frac {(n-s+{\frac {1}{2}})(s+{\frac {1}{2}})}{(2+n)(1+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in var}}={\frac {1}{8+4n}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e259bf78be07a741013e0a7b30627f49bde4437" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:73.456ex; height:7.176ex;" alt="{\displaystyle {\text{variance}}={\frac {(n-s+{\frac {1}{2}})(s+{\frac {1}{2}})}{(2+n)(1+n)^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in var}}={\frac {1}{8+4n}}}"></span></dd></dl>
<p>and for the <b>Haldane</b> prior probability (Beta(0,0)), the posterior variance is:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{variance}}={\frac {(n-s)s}{(1+n)n^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{4+4n}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
<mi>s</mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<msup>
<mi>n</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;which for&#xA0;</mtext>
</mrow>
<mi>s</mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>n</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mtext>&#xA0;results in variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<mrow>
<mn>4</mn>
<mo>+</mo>
<mn>4</mn>
<mi>n</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{variance}}={\frac {(n-s)s}{(1+n)n^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{4+4n}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61213e281fd4a510a97341e147dee5077bb04a0f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:69.247ex; height:6.509ex;" alt="{\displaystyle {\text{variance}}={\frac {(n-s)s}{(1+n)n^{2}}},{\text{ which for }}s={\frac {n}{2}}{\text{ results in variance}}={\frac {1}{4+4n}}}"></span></dd></dl>
<p>So, as remarked by Silvey,<sup id="cite_ref-Silvey_49-2" class="reference"><a href="#cite_note-Silvey-49">&#91;49&#93;</a></sup> for large <i>n</i>, the variance is small and hence the posterior distribution is highly concentrated, whereas the assumed prior distribution was very diffuse. This is in accord with what one would hope for, as vague prior knowledge is transformed (through Bayes theorem) into a more precise posterior knowledge by an informative experiment. For small <i>n</i> the Haldane Beta(0,0) prior results in the largest posterior variance while the Bayes Beta(1,1) prior results in the more concentrated posterior. Jeffreys prior Beta(1/2,1/2) results in a posterior variance in between the other two. As <i>n</i> increases, the variance rapidly decreases so that the posterior variance for all three priors converges to approximately the same value (approaching zero variance as <i>n</i> → ∞). Recalling the previous result that the <i>Haldane</i> prior probability Beta(0,0) results in a posterior probability density with <i>mean</i> (the expected value for the probability of success in the "next" trial) identical to the ratio s/n of the number of successes to the total number of trials, it follows from the above expression that also the <i>Haldane</i> prior Beta(0,0) results in a posterior with <i>variance</i> identical to the variance expressed in terms of the max. likelihood estimate s/n and sample size (in <a href="#Variance">§&#160;Variance</a>):
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{variance}}={\frac {\mu (1-\mu )}{1+\nu }}={\frac {(n-s)s}{(1+n)n^{2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtext>variance</mtext>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>&#x03BD;<!-- ν --></mi>
</mrow>
</mfrac>
</mrow>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>&#x2212;<!-- --></mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
<mi>s</mi>
</mrow>
<mrow>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>+</mo>
<mi>n</mi>
<mo stretchy="false">)</mo>
<msup>
<mi>n</mi>
<mrow class="MJX-TeXAtom-ORD">
<mn>2</mn>
</mrow>
</msup>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\text{variance}}={\frac {\mu (1-\mu )}{1+\nu }}={\frac {(n-s)s}{(1+n)n^{2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad6c410c1c6a0ed633fa773ddcc91a55eaa68fdc" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:34.609ex; height:6.509ex;" alt="{\displaystyle {\text{variance}}={\frac {\mu (1-\mu )}{1+\nu }}={\frac {(n-s)s}{(1+n)n^{2}}}}"></span></dd></dl>
<p>with the mean <i>μ</i>&#160;=&#160;<i>s</i>/<i>n</i> and the sample size&#160;<i>ν</i>&#160;=&#160;<i>n</i>.
</p><p>In Bayesian inference, using a <a href="/wiki/Prior_distribution" class="mw-redirect" title="Prior distribution">prior distribution</a> Beta(<i>α</i>Prior,<i>β</i>Prior) prior to a binomial distribution is equivalent to adding (<i>α</i>Prior&#160;&#160;1) pseudo-observations of "success" and (<i>β</i>Prior&#160;&#160;1) pseudo-observations of "failure" to the actual number of successes and failures observed, then estimating the parameter <i>p</i> of the binomial distribution by the proportion of successes over both real- and pseudo-observations. A uniform prior Beta(1,1) does not add (or subtract) any pseudo-observations since for Beta(1,1) it follows that (<i>α</i>Prior&#160;&#160;1)&#160;=&#160;0 and (<i>β</i>Prior&#160;&#160;1)&#160;=&#160;0. The Haldane prior Beta(0,0) subtracts one pseudo observation from each and Jeffreys prior Beta(1/2,1/2) subtracts 1/2 pseudo-observation of success and an equal number of failure. This subtraction has the effect of <a href="/wiki/Smoothing" title="Smoothing">smoothing</a> out the posterior distribution. If the proportion of successes is not 50% (<i>s</i>/<i>n</i>&#160;≠&#160;1/2) values of <i>α</i>Prior and <i>β</i>Prior less than&#160;1 (and therefore negative (<i>α</i>Prior&#160;&#160;1) and (<i>β</i>Prior&#160;&#160;1)) favor sparsity, i.e. distributions where the parameter <i>p</i> is closer to either 0 or&#160;1. In effect, values of <i>α</i>Prior and <i>β</i>Prior between 0 and 1, when operating together, function as a <a href="/wiki/Concentration_parameter" title="Concentration parameter">concentration parameter</a>.
</p><p>The accompanying plots show the posterior probability density functions for sample sizes <i>n</i>&#160;&#8712;&#160;{3,10,50}, successes <i>s</i>&#160;&#8712;&#160;{<i>n</i>/2,<i>n</i>/4} and Beta(<i>α</i>Prior,<i>β</i>Prior)&#160;&#8712;&#160;{Beta(0,0),Beta(1/2,1/2),Beta(1,1)}. Also shown are the cases for <i>n</i>&#160;=&#160;{4,12,40}, success <i>s</i>&#160;=&#160;{<i>n</i>/4} and Beta(<i>α</i>Prior,<i>β</i>Prior)&#160;&#8712;&#160;{Beta(0,0),Beta(1/2,1/2),Beta(1,1)}. The first plot shows the symmetric cases, for successes <i>s</i>&#160;&#8712;&#160;{n/2}, with mean&#160;=&#160;mode&#160;=&#160;1/2 and the second plot shows the skewed cases <i>s</i>&#160;&#8712;&#160;{<i>n</i>/4}. The images show that there is little difference between the priors for the posterior with sample size of 50 (characterized by a more pronounced peak near <i>p</i>&#160;=&#160;1/2). Significant differences appear for very small sample sizes (in particular for the flatter distribution for the degenerate case of sample size&#160;=&#160;3). Therefore, the skewed cases, with successes <i>s</i>&#160;=&#160;{<i>n</i>/4}, show a larger effect from the choice of prior, at small sample size, than the symmetric cases. For symmetric distributions, the Bayes prior Beta(1,1) results in the most "peaky" and highest posterior distributions and the Haldane prior Beta(0,0) results in the flattest and lowest peak distribution. The Jeffreys prior Beta(1/2,1/2) lies in between them. For nearly symmetric, not too skewed distributions the effect of the priors is similar. For very small sample size (in this case for a sample size of 3) and skewed distribution (in this example for <i>s</i>&#160;&#8712;&#160;{<i>n</i>/4}) the Haldane prior can result in a reverse-J-shaped distribution with a singularity at the left end. However, this happens only in degenerate cases (in this example <i>n</i>&#160;=&#160;3 and hence <i>s</i>&#160;=&#160;3/4&#160;&lt;&#160;1, a degenerate value because s should be greater than unity in order for the posterior of the Haldane prior to have a mode located between the ends, and because <i>s</i>&#160;=&#160;3/4 is not an integer number, hence it violates the initial assumption of a binomial distribution for the likelihood) and it is not an issue in generic cases of reasonable sample size (such that the condition 1&#160;&lt;&#160;<i>s</i>&#160;&lt;&#160;<i>n</i>&#160;&#160;1, necessary for a mode to exist between both ends, is fulfilled).
</p><p>In Chapter 12 (p.&#160;385) of his book, Jaynes<sup id="cite_ref-Jaynes_51-3" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup> asserts that the <i>Haldane prior</i> Beta(0,0) describes a <i>prior state of knowledge of complete ignorance</i>, where we are not even sure whether it is physically possible for an experiment to yield either a success or a failure, while the <i>Bayes (uniform) prior Beta(1,1) applies if</i> one knows that <i>both binary outcomes are possible</i>. Jaynes states: "<i>interpret the Bayes-Laplace (Beta(1,1)) prior as describing not a state of complete ignorance</i>, but the state of knowledge in which we have observed one success and one failure...once we have seen at least one success and one failure, then we know that the experiment is a true binary one, in the sense of physical possibility." Jaynes <sup id="cite_ref-Jaynes_51-4" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup> does not specifically discuss Jeffreys prior Beta(1/2,1/2) (Jaynes discussion of "Jeffreys prior" on pp.&#160;181, 423 and on chapter 12 of Jaynes book<sup id="cite_ref-Jaynes_51-5" class="reference"><a href="#cite_note-Jaynes-51">&#91;51&#93;</a></sup> refers instead to the improper, un-normalized, prior "1/<i>p</i>&#160;<i>dp</i>" introduced by Jeffreys in the 1939 edition of his book,<sup id="cite_ref-Jeffreys_58-3" class="reference"><a href="#cite_note-Jeffreys-58">&#91;58&#93;</a></sup> seven years before he introduced what is now known as Jeffreys' invariant prior: the square root of the determinant of Fisher's information matrix. <i>"1/p" is Jeffreys' (1946) invariant prior for the <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential distribution</a>, not for the Bernoulli or binomial distributions</i>). However, it follows from the above discussion that Jeffreys Beta(1/2,1/2) prior represents a state of knowledge in between the Haldane Beta(0,0) and Bayes Beta (1,1) prior.
</p><p>Similarly, <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> in his 1892 book <a href="/wiki/The_Grammar_of_Science" title="The Grammar of Science">The Grammar of Science</a><sup id="cite_ref-PearsonGrammar_67-0" class="reference"><a href="#cite_note-PearsonGrammar-67">&#91;67&#93;</a></sup><sup id="cite_ref-PearsnGrammar2009_68-0" class="reference"><a href="#cite_note-PearsnGrammar2009-68">&#91;68&#93;</a></sup> (p.&#160;144 of 1900 edition) maintained that the Bayes (Beta(1,1) uniform prior was not a complete ignorance prior, and that it should be used when prior information justified to "distribute our ignorance equally"". K. Pearson wrote: "Yet the only supposition that we appear to have made is this: that, knowing nothing of nature, routine and anomy (from the Greek ανομία, namely: a- "without", and nomos "law") are to be considered as equally likely to occur. Now we were not really justified in making even this assumption, for it involves a knowledge that we do not possess regarding nature. We use our <i>experience</i> of the constitution and action of coins in general to assert that heads and tails are equally probable, but we have no right to assert before experience that, as we know nothing of nature, routine and breach are equally probable. In our ignorance we ought to consider before experience that nature may consist of all routines, all anomies (normlessness), or a mixture of the two in any proportion whatever, and that all such are equally probable. Which of these constitutions after experience is the most probable must clearly depend on what that experience has been like."
</p><p>If there is sufficient <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sampling data</a>, <i>and the posterior probability mode is not located at one of the extremes of the domain</i> (x=0 or x=1), the three priors of Bayes (Beta(1,1)), Jeffreys (Beta(1/2,1/2)) and Haldane (Beta(0,0)) should yield similar <a href="/wiki/Posterior_probability" title="Posterior probability"><i>posterior</i> probability</a> densities. Otherwise, as Gelman et al.<sup id="cite_ref-Gelman_69-0" class="reference"><a href="#cite_note-Gelman-69">&#91;69&#93;</a></sup> (p.&#160;65) point out, "if so few data are available that the choice of noninformative prior distribution makes a difference, one should put relevant information into the prior distribution", or as Berger<sup id="cite_ref-BergerDecisionTheory_4-1" class="reference"><a href="#cite_note-BergerDecisionTheory-4">&#91;4&#93;</a></sup> (p.&#160;125) points out "when different reasonable priors yield substantially different answers, can it be right to state that there <i>is</i> a single answer? Would it not be better to admit that there is scientific uncertainty, with the conclusion depending on prior beliefs?."
</p>
<h2><span class="mw-headline" id="Occurrence_and_applications">Occurrence and applications</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=66" title="Edit section: Occurrence and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<h3><span class="mw-headline" id="Order_statistics">Order statistics</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=67" title="Edit section: Order statistics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Order_statistic" title="Order statistic">Order statistic</a></div>
<p>The beta distribution has an important application in the theory of <a href="/wiki/Order_statistic" title="Order statistic">order statistics</a>. A basic result is that the distribution of the <i>k</i>th smallest of a sample of size <i>n</i> from a continuous <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a> has a beta distribution.<sup id="cite_ref-David1_38-1" class="reference"><a href="#cite_note-David1-38">&#91;38&#93;</a></sup> This result is summarized as:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U_{(k)}\sim \operatorname {Beta} (k,n+1-k).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<msub>
<mi>U</mi>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
</mrow>
</msub>
<mo>&#x223C;<!-- --></mo>
<mi>Beta</mi>
<mo>&#x2061;<!-- --></mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>,</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle U_{(k)}\sim \operatorname {Beta} (k,n+1-k).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28bbb16c265c1830b57c4bb5eb375ef984b360f2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.95ex; height:3.176ex;" alt="{\displaystyle U_{(k)}\sim \operatorname {Beta} (k,n+1-k).}"></span></dd></dl>
<p>From this, and application of the theory related to the <a href="/wiki/Probability_integral_transform" title="Probability integral transform">probability integral transform</a>, the distribution of any individual order statistic from any <a href="/wiki/Continuous_distribution" class="mw-redirect" title="Continuous distribution">continuous distribution</a> can be derived.<sup id="cite_ref-David1_38-2" class="reference"><a href="#cite_note-David1-38">&#91;38&#93;</a></sup>
</p>
<h3><span class="mw-headline" id="Subjective_logic">Subjective logic</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=68" title="Edit section: Subjective logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Subjective_logic" title="Subjective logic">Subjective logic</a></div>
<p>In standard logic, propositions are considered to be either true or false. In contradistinction, <a href="/wiki/Subjective_logic" title="Subjective logic">subjective logic</a> assumes that humans cannot determine with absolute certainty whether a proposition about the real world is absolutely true or false. In <a href="/wiki/Subjective_logic" title="Subjective logic">subjective logic</a> the <a href="/wiki/A_posteriori" class="mw-redirect" title="A posteriori">posteriori</a> probability estimates of binary events can be represented by beta distributions.<sup id="cite_ref-J01_70-0" class="reference"><a href="#cite_note-J01-70">&#91;70&#93;</a></sup>
</p>
<h3><span class="mw-headline" id="Wavelet_analysis">Wavelet analysis</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=69" title="Edit section: Wavelet analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Beta_wavelet" title="Beta wavelet">Beta wavelet</a></div>
<p>A <a href="/wiki/Wavelet" title="Wavelet">wavelet</a> is a wave-like <a href="/wiki/Oscillation" title="Oscillation">oscillation</a> with an <a href="/wiki/Amplitude" title="Amplitude">amplitude</a> that starts out at zero, increases, and then decreases back to zero. It can typically be visualized as a "brief oscillation" that promptly decays. Wavelets can be used to extract information from many different kinds of data, including&#160; but certainly not limited to&#160; audio signals and images. Thus, wavelets are purposefully crafted to have specific properties that make them useful for <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>. Wavelets are localized in both time and <a href="/wiki/Frequency" title="Frequency">frequency</a> whereas the standard <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> is only localized in frequency. Therefore, standard Fourier Transforms are only applicable to <a href="/wiki/Stationary_process" title="Stationary process">stationary processes</a>, while <a href="/wiki/Wavelet" title="Wavelet">wavelets</a> are applicable to non-<a href="/wiki/Stationary_process" title="Stationary process">stationary processes</a>. Continuous wavelets can be constructed based on the beta distribution. <a href="/wiki/Beta_wavelet" title="Beta wavelet">Beta wavelets</a><sup id="cite_ref-wavelet_oliveira_71-0" class="reference"><a href="#cite_note-wavelet_oliveira-71">&#91;71&#93;</a></sup> can be viewed as a soft variety of <a href="/wiki/Haar_wavelet" title="Haar wavelet">Haar wavelets</a> whose shape is fine-tuned by two shape parameters α and β.
</p>
<h3><span class="mw-headline" id="Population_genetics">Population genetics</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=70" title="Edit section: Population genetics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Balding%E2%80%93Nichols_model" title="BaldingNichols model">BaldingNichols model</a></div>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/F-statistics" title="F-statistics">F-statistics</a>, <a href="/wiki/Fixation_index" title="Fixation index">Fixation index</a>, and <a href="/wiki/Coefficient_of_relationship" title="Coefficient of relationship">Coefficient of relationship</a></div>
<p>The <a href="/wiki/Balding%E2%80%93Nichols_model" title="BaldingNichols model">BaldingNichols model</a> is a two-parameter <a href="/wiki/Statistical_parameter" title="Statistical parameter">parametrization</a> of the beta distribution used in <a href="/wiki/Population_genetics" title="Population genetics">population genetics</a>.<sup id="cite_ref-Balding_72-0" class="reference"><a href="#cite_note-Balding-72">&#91;72&#93;</a></sup> It is a statistical description of the <a href="/wiki/Allele_frequencies" class="mw-redirect" title="Allele frequencies">allele frequencies</a> in the components of a sub-divided population:
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha &amp;=\mu \nu ,\\\beta &amp;=(1-\mu )\nu ,\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03B1;<!-- α --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mi>&#x03BC;<!-- μ --></mi>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03B2;<!-- β --></mi>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">)</mo>
<mi>&#x03BD;<!-- ν --></mi>
<mo>,</mo>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha &amp;=\mu \nu ,\\\beta &amp;=(1-\mu )\nu ,\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49c1e37dd960ad3b68ef0eaf2ab5fafd4b2209c8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.43ex; height:6.009ex;" alt="{\displaystyle {\begin{aligned}\alpha &amp;=\mu \nu ,\\\beta &amp;=(1-\mu )\nu ,\end{aligned}}}"></span></dd></dl>
<p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu =\alpha +\beta ={\frac {1-F}{F}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BD;<!-- ν --></mi>
<mo>=</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>F</mi>
</mrow>
<mi>F</mi>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \nu =\alpha +\beta ={\frac {1-F}{F}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b55447a019bc1bc8f690546bbb416e0dbece32" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.669ex; height:5.176ex;" alt="{\displaystyle \nu =\alpha +\beta ={\frac {1-F}{F}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;F&lt;1}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mn>0</mn>
<mo>&lt;</mo>
<mi>F</mi>
<mo>&lt;</mo>
<mn>1</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle 0&lt;F&lt;1}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f7e5ad065befe4700eeb8b5a154a1c558b44373" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.263ex; height:2.176ex;" alt="0&lt;F&lt;1"></span>; here <i>F</i> is (Wright's) genetic distance between two populations.
</p>
<h3><span class="mw-headline" id="Project_management:_task_cost_and_schedule_modeling">Project management: task cost and schedule modeling</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=71" title="Edit section: Project management: task cost and schedule modeling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3>
<p>The beta distribution can be used to model events which are constrained to take place within an interval defined by a minimum and maximum value. For this reason, the beta distribution&#160;— along with the <a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular distribution</a>&#160;— is used extensively in <a href="/wiki/PERT" class="mw-redirect" title="PERT">PERT</a>, <a href="/wiki/Critical_path_method" title="Critical path method">critical path method</a> (CPM), Joint Cost Schedule Modeling (JCSM) and other <a href="/wiki/Project_management" title="Project management">project management</a>/control systems to describe the time to completion and the cost of a task. In project management, shorthand computations are widely used to estimate the <a href="/wiki/Mean" title="Mean">mean</a> and <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> of the beta distribution:<sup id="cite_ref-Malcolm_37-1" class="reference"><a href="#cite_note-Malcolm-37">&#91;37&#93;</a></sup>
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu (X)&amp;={\frac {a+4b+c}{6}}\\\sigma (X)&amp;={\frac {c-a}{6}}\end{aligned}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">
<mtr>
<mtd>
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mn>4</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mi>&#x03C3;<!-- σ --></mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</mtd>
<mtd>
<mi></mi>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu (X)&amp;={\frac {a+4b+c}{6}}\\\sigma (X)&amp;={\frac {c-a}{6}}\end{aligned}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acc757c8bf140dbfd82365275fa9843a8db0a751" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.472ex; margin-bottom: -0.199ex; width:19.955ex; height:10.509ex;" alt=" \begin{align}&#10; \mu(X) &amp; = \frac{a + 4b + c}{6} \\&#10; \sigma(X) &amp; = \frac{c-a}{6}&#10;\end{align}"></span></dd></dl>
<p>where <i>a</i> is the minimum, <i>c</i> is the maximum, and <i>b</i> is the most likely value (the <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> for <i>α</i> &gt; 1 and <i>β</i> &gt; 1).
</p><p>The above estimate for the <a href="/wiki/Mean" title="Mean">mean</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (X)={\frac {a+4b+c}{6}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03BC;<!-- μ --></mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>a</mi>
<mo>+</mo>
<mn>4</mn>
<mi>b</mi>
<mo>+</mo>
<mi>c</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mu (X)={\frac {a+4b+c}{6}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55659b9a1a4f5b15000858659deca16e38dc01fe" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.203ex; height:5.343ex;" alt="\mu(X)= \frac{a + 4b + c}{6}"></span> is known as the <a href="/wiki/PERT" class="mw-redirect" title="PERT">PERT</a> <a href="/wiki/Three-point_estimation" title="Three-point estimation">three-point estimation</a> and it is exact for either of the following values of <i>β</i> (for arbitrary α within these ranges):
</p>
<dl><dd><i>β</i> = <i>α</i> &gt; 1 (symmetric case) with <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (X)={\frac {c-a}{2{\sqrt {1+2\alpha }}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C3;<!-- σ --></mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
</mrow>
<mrow>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>1</mn>
<mo>+</mo>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \sigma (X)={\frac {c-a}{2{\sqrt {1+2\alpha }}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/023fd07dfd3669cde84d9cff72b6a6af3d8ffbab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:18.805ex; height:6.009ex;" alt="{\displaystyle \sigma (X)={\frac {c-a}{2{\sqrt {1+2\alpha }}}}}"></span>, <a href="/wiki/Skewness" title="Skewness">skewness</a> = 0, and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {-6}{3+2\alpha }}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>6</mn>
</mrow>
<mrow>
<mn>3</mn>
<mo>+</mo>
<mn>2</mn>
<mi>&#x03B1;<!-- α --></mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {-6}{3+2\alpha }}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f97b76a4804eeb490db5708337a448815594f5" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.489ex; height:5.343ex;" alt=" \frac{-6}{3+2 \alpha}"></span></dd></dl>
<p><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg/720px-Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg.png" decoding="async" width="720" height="453" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg/1080px-Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg/1440px-Beta_Distribution_beta%3Dalpha_from_1.05_to_4.95.svg.png 2x" data-file-width="720" data-file-height="453" /></a></span>
</p><p>or
</p>
<dl><dd><i>β</i> = 6 <i>α</i> for 5 &gt; <i>α</i> &gt; 1 (skewed case) with <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a></dd></dl>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma (X)={\frac {(c-a){\sqrt {\alpha (6-\alpha )}}}{6{\sqrt {7}}}},}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03C3;<!-- σ --></mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mi>c</mi>
<mo>&#x2212;<!-- --></mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mrow>
<mrow>
<mn>6</mn>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>7</mn>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
<mo>,</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \sigma (X)={\frac {(c-a){\sqrt {\alpha (6-\alpha )}}}{6{\sqrt {7}}}},}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3feac4fe845f042c246d8822d848826f95ac9a8d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:27.698ex; height:7.176ex;" alt="\sigma(X) = \frac{(c-a)\sqrt{\alpha(6-\alpha)}}{6 \sqrt 7},"></span></dd></dl>
<p><a href="/wiki/Skewness" title="Skewness">skewness</a> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(3-\alpha ){\sqrt {7}}}{2{\sqrt {\alpha (6-\alpha )}}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo stretchy="false">(</mo>
<mn>3</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>7</mn>
</msqrt>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</msqrt>
</mrow>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {(3-\alpha ){\sqrt {7}}}{2{\sqrt {\alpha (6-\alpha )}}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55bb0f1c46650ff7798daec36623eba85828c12f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:13.11ex; height:7.343ex;" alt="\frac{(3-\alpha) \sqrt 7}{2\sqrt{\alpha(6-\alpha)}}"></span>, and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {21}{\alpha (6-\alpha )}}-3}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>21</mn>
<mrow>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">(</mo>
<mn>6</mn>
<mo>&#x2212;<!-- --></mo>
<mi>&#x03B1;<!-- α --></mi>
<mo stretchy="false">)</mo>
</mrow>
</mfrac>
</mrow>
<mo>&#x2212;<!-- --></mo>
<mn>3</mn>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {21}{\alpha (6-\alpha )}}-3}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce15bfce881004bfaf219acf930ba7259ac2868" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.626ex; height:6.009ex;" alt="\frac{21}{\alpha (6- \alpha)} - 3"></span>
</p><p><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg/720px-Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg.png" decoding="async" width="720" height="459" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg/1080px-Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg/1440px-Beta_Distribution_beta%3D6-alpha_from_1.05_to_4.95.svg.png 2x" data-file-width="720" data-file-height="459" /></a></span>
</p><p>The above estimate for the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <i>σ</i>(<i>X</i>) = (<i>c</i> <i>a</i>)/6 is exact for either of the following values of <i>α</i> and <i>β</i>:
</p>
<dl><dd><i>α</i> = <i>β</i> = 4 (symmetric) with <a href="/wiki/Skewness" title="Skewness">skewness</a> = 0, and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> = 6/11.</dd>
<dd><i>β</i> = 6 <i>α</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =3-{\sqrt {2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>3</mn>
<mo>&#x2212;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =3-{\sqrt {2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a7b6780ceaf0f8749f685b72f15717f3eb5495" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.687ex; height:3.009ex;" alt="\alpha = 3 - \sqrt2"></span> (right-tailed, positive skew) with <a href="/wiki/Skewness" title="Skewness">skewness</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mn>1</mn>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ={\frac {1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1341a3569f368b2971b4633c9882e311fa46a088" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.388ex; height:6.176ex;" alt="{\displaystyle ={\frac {1}{\sqrt {2}}}}"></span>, and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> = 0</dd>
<dd><i>β</i> = 6 <i>α</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =3+{\sqrt {2}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>&#x03B1;<!-- α --></mi>
<mo>=</mo>
<mn>3</mn>
<mo>+</mo>
<mrow class="MJX-TeXAtom-ORD">
<msqrt>
<mn>2</mn>
</msqrt>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \alpha =3+{\sqrt {2}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/208c420c6769274760ca91cb89d5ed807c49688e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.687ex; height:3.009ex;" alt="\alpha = 3 + \sqrt2"></span> (left-tailed, negative skew) with <a href="/wiki/Skewness" title="Skewness">skewness</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {-1}{\sqrt {2}}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mo>=</mo>
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mo>&#x2212;<!-- --></mo>
<mn>1</mn>
</mrow>
<msqrt>
<mn>2</mn>
</msqrt>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle ={\frac {-1}{\sqrt {2}}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/008cc324672bd8d5d50c12bb4a66a85d03c8e22e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:6.388ex; height:6.176ex;" alt="{\displaystyle ={\frac {-1}{\sqrt {2}}}}"></span>, and <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> = 0</dd></dl>
<p><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:Beta_Distribution_for_conjugate_alpha_beta.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Beta_Distribution_for_conjugate_alpha_beta.svg/720px-Beta_Distribution_for_conjugate_alpha_beta.svg.png" decoding="async" width="720" height="460" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Beta_Distribution_for_conjugate_alpha_beta.svg/1080px-Beta_Distribution_for_conjugate_alpha_beta.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Beta_Distribution_for_conjugate_alpha_beta.svg/1440px-Beta_Distribution_for_conjugate_alpha_beta.svg.png 2x" data-file-width="720" data-file-height="460" /></a></span>
</p><p>Otherwise, these can be poor approximations for beta distributions with other values of α and β, exhibiting average errors of 40% in the mean and 549% in the variance.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73">&#91;73&#93;</a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74">&#91;74&#93;</a></sup><sup id="cite_ref-75" class="reference"><a href="#cite_note-75">&#91;75&#93;</a></sup>
</p>
<h2><span class="mw-headline" id="Random_variate_generation">Random variate generation</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=72" title="Edit section: Random variate generation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1033289096"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Non-uniform_random_variate_generation" title="Non-uniform random variate generation">Non-uniform random variate generation</a></div>
<p>If <i>X</i> and <i>Y</i> are independent, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \Gamma (\alpha ,\theta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>&#x223C;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X\sim \Gamma (\alpha ,\theta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc24e37f0c7d4fb01955a76c7a624840eb4ccb0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.953ex; height:2.843ex;" alt="X \sim \Gamma(\alpha, \theta)"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \Gamma (\beta ,\theta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Y</mi>
<mo>&#x223C;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Y\sim \Gamma (\beta ,\theta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47a84f49e72d95c70ecdb7f3dcfc9dff7df0bd79" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.59ex; height:2.843ex;" alt="Y \sim \Gamma(\beta, \theta)"></span> then
</p>
<dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X}{X+Y}}\sim \mathrm {B} (\alpha ,\beta ).}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
<mo>.</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X}{X+Y}}\sim \mathrm {B} (\alpha ,\beta ).}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bd2b6dea25aeefae71af31b8751b855d8848543" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.484ex; height:5.343ex;" alt="{\displaystyle {\frac {X}{X+Y}}\sim \mathrm {B} (\alpha ,\beta ).}"></span></dd></dl>
<p>So one algorithm for generating beta variates is to generate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X}{X+Y}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X}{X+Y}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42bc8b3f6470f35915b2708902dab39673407a1e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.43ex; height:5.343ex;" alt="{\displaystyle {\frac {X}{X+Y}}}"></span>, where <i>X</i> is a <a href="/wiki/Gamma_distribution#Random_variate_generation" title="Gamma distribution">gamma variate</a> with parameters (α, 1) and <i>Y</i> is an independent gamma variate with parameters (β, 1).<sup id="cite_ref-76" class="reference"><a href="#cite_note-76">&#91;76&#93;</a></sup> In fact, here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X}{X+Y}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X}{X+Y}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42bc8b3f6470f35915b2708902dab39673407a1e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.43ex; height:5.343ex;" alt="{\displaystyle {\frac {X}{X+Y}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+Y}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X+Y}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/191744cf9cddeff3ab2e750e22bcfce7766d355e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.594ex; height:2.343ex;" alt="X+Y"></span> are independent, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+Y\sim \Gamma (\alpha +\beta ,\theta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
<mo>&#x223C;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X+Y\sim \Gamma (\alpha +\beta ,\theta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d88f9521cace3408c444bb15dea5a4a3c2072d9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.739ex; height:2.843ex;" alt="{\displaystyle X+Y\sim \Gamma (\alpha +\beta ,\theta )}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z\sim \Gamma (\gamma ,\theta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Z</mi>
<mo>&#x223C;<!-- --></mo>
<mi mathvariant="normal">&#x0393;<!-- Γ --></mi>
<mo stretchy="false">(</mo>
<mi>&#x03B3;<!-- γ --></mi>
<mo>,</mo>
<mi>&#x03B8;<!-- θ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Z\sim \Gamma (\gamma ,\theta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/997d2e51e143bd9423b61aa7bc76d4caa6366cf2" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.428ex; height:2.843ex;" alt="{\displaystyle Z\sim \Gamma (\gamma ,\theta )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Z</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Z}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="Z"></span> is independent of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>X</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle X}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="X"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mi>Y</mi>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle Y}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="Y"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X+Y}{X+Y+Z}}\sim \mathrm {B} (\alpha +\beta ,\gamma )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
<mo>+</mo>
<mi>Z</mi>
</mrow>
</mfrac>
</mrow>
<mo>&#x223C;<!-- --></mo>
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B3;<!-- γ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X+Y}{X+Y+Z}}\sim \mathrm {B} (\alpha +\beta ,\gamma )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd91125d334bb959e8ebf89504c23f7066be3b54" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26.46ex; height:5.343ex;" alt="{\displaystyle {\frac {X+Y}{X+Y+Z}}\sim \mathrm {B} (\alpha +\beta ,\gamma )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X+Y}{X+Y+Z}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
<mo>+</mo>
<mi>Z</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X+Y}{X+Y+Z}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5f48f66d0085cac1f622af4b9443c532d8c5eb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.951ex; height:5.343ex;" alt="{\displaystyle {\frac {X+Y}{X+Y+Z}}}"></span> is independent of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X}{X+Y}}}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mfrac>
<mi>X</mi>
<mrow>
<mi>X</mi>
<mo>+</mo>
<mi>Y</mi>
</mrow>
</mfrac>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle {\frac {X}{X+Y}}}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42bc8b3f6470f35915b2708902dab39673407a1e" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.43ex; height:5.343ex;" alt="{\displaystyle {\frac {X}{X+Y}}}"></span>. This shows that the product of independent <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fea4d61abd27c28412c65add2f028b57b17fb12" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.308ex; height:2.843ex;" alt="{\displaystyle \mathrm {B} (\alpha ,\beta )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha +\beta ,\gamma )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>+</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>,</mo>
<mi>&#x03B3;<!-- γ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha +\beta ,\gamma )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2504a4ad7a50cab34808b42e35ff1b73e863b9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.411ex; height:2.843ex;" alt="{\displaystyle \mathrm {B} (\alpha +\beta ,\gamma )}"></span> random variables is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha ,\beta +\gamma )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo>+</mo>
<mi>&#x03B3;<!-- γ --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha ,\beta +\gamma )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f991b0924c7dcba924e3123313bc19f762b4e79" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.411ex; height:2.843ex;" alt="{\displaystyle \mathrm {B} (\alpha ,\beta +\gamma )}"></span> random variable.
</p><p>Also, the <i>k</i>th <a href="/wiki/Order_statistic" title="Order statistic">order statistic</a> of <i>n</i> <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniformly distributed</a> variates is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (k,n+1-k)}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>,</mo>
<mi>n</mi>
<mo>+</mo>
<mn>1</mn>
<mo>&#x2212;<!-- --></mo>
<mi>k</mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (k,n+1-k)}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f6a88b3a90aa4cd75f5a828258720d1f4bcaa79" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.149ex; height:2.843ex;" alt="\Beta(k, n+1-k)"></span>, so an alternative if α and β are small integers is to generate α + β 1 uniform variates and choose the α-th smallest.<sup id="cite_ref-David1_38-3" class="reference"><a href="#cite_note-David1-38">&#91;38&#93;</a></sup>
</p><p>Another way to generate the Beta distribution is by <a href="/wiki/P%C3%B3lya_urn_model" title="Pólya urn model">Pólya urn model</a>. According to this method, one start with an "urn" with α "black" balls and β "white" balls and draw uniformly with replacement. Every trial an additional ball is added according to the color of the last ball which was drawn. Asymptotically, the proportion of black and white balls will be distributed according to the Beta distribution, where each repetition of the experiment will produce a different value.
</p><p>It is also possible to use the <a href="/wiki/Inverse_transform_sampling" title="Inverse transform sampling">inverse transform sampling</a>.
</p>
<h2><span class="mw-headline" id="Normal_approximation_to_the_Beta_distribution">Normal approximation to the Beta distribution</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=73" title="Edit section: Normal approximation to the Beta distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>A beta distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fea4d61abd27c28412c65add2f028b57b17fb12" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.308ex; height:2.843ex;" alt="{\displaystyle \mathrm {B} (\alpha ,\beta )}"></span> with α ~ β and α and β &gt;&gt; 1 is approximately normal with mean 1/2 and variance 1/(4(2α + 1)). If α ≥ β the Normal approximation can be improved by taking the cube-root of the logarithm of the reciprocal of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {B} (\alpha ,\beta )}">
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">B</mi>
</mrow>
<mo stretchy="false">(</mo>
<mi>&#x03B1;<!-- α --></mi>
<mo>,</mo>
<mi>&#x03B2;<!-- β --></mi>
<mo stretchy="false">)</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle \mathrm {B} (\alpha ,\beta )}</annotation>
</semantics>
</math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fea4d61abd27c28412c65add2f028b57b17fb12" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.308ex; height:2.843ex;" alt="{\displaystyle \mathrm {B} (\alpha ,\beta )}"></span><sup id="cite_ref-77" class="reference"><a href="#cite_note-77">&#91;77&#93;</a></sup>
</p>
<h2><span class="mw-headline" id="History">History</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=74" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p><a href="/wiki/Thomas_Bayes" title="Thomas Bayes">Thomas Bayes</a>, in a posthumous paper <sup id="cite_ref-ThomasBayes_61-1" class="reference"><a href="#cite_note-ThomasBayes-61">&#91;61&#93;</a></sup> published in 1763 by <a href="/wiki/Richard_Price" title="Richard Price">Richard Price</a>, obtained a beta distribution as the density of the probability of success in Bernoulli trials (see <a href="#Applications,_Bayesian_inference">§&#160;Applications, Bayesian inference</a>), but the paper does not analyze any of the moments of the beta distribution or discuss any of its properties.
</p>
<figure typeof="mw:File/Thumb"><a href="/wiki/File:Karl_Pearson_2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/21/Karl_Pearson_2.jpg/220px-Karl_Pearson_2.jpg" decoding="async" width="220" height="268" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/21/Karl_Pearson_2.jpg 1.5x" data-file-width="314" data-file-height="382" /></a><figcaption><a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a> analyzed the beta distribution as the solution Type I of Pearson distributions</figcaption></figure>
<p>The first systematic modern discussion of the beta distribution is probably due to <a href="/wiki/Karl_Pearson" title="Karl Pearson">Karl Pearson</a>.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78">&#91;78&#93;</a></sup><sup id="cite_ref-rscat_79-0" class="reference"><a href="#cite_note-rscat-79">&#91;79&#93;</a></sup> In Pearson's papers<sup id="cite_ref-Pearson_20-5" class="reference"><a href="#cite_note-Pearson-20">&#91;20&#93;</a></sup><sup id="cite_ref-Pearson1895_32-1" class="reference"><a href="#cite_note-Pearson1895-32">&#91;32&#93;</a></sup> the beta distribution is couched as a solution of a differential equation: <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson's Type I distribution</a> which it is essentially identical to except for arbitrary shifting and re-scaling (the beta and Pearson Type I distributions can always be equalized by proper choice of parameters). In fact, in several English books and journal articles in the few decades prior to World War II, it was common to refer to the beta distribution as Pearson's Type I distribution. <a href="/wiki/William_Palin_Elderton" title="William Palin Elderton">William P. Elderton</a> in his 1906 monograph "Frequency curves and correlation"<sup id="cite_ref-Elderton1906_41-6" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup> further analyzes the beta distribution as Pearson's Type I distribution, including a full discussion of the method of moments for the four parameter case, and diagrams of (what Elderton describes as) U-shaped, J-shaped, twisted J-shaped, "cocked-hat" shapes, horizontal and angled straight-line cases. Elderton wrote "I am chiefly indebted to Professor Pearson, but the indebtedness is of a kind for which it is impossible to offer formal thanks." <a href="/wiki/William_Palin_Elderton" title="William Palin Elderton">Elderton</a> in his 1906 monograph <sup id="cite_ref-Elderton1906_41-7" class="reference"><a href="#cite_note-Elderton1906-41">&#91;41&#93;</a></sup> provides an impressive amount of information on the beta distribution, including equations for the origin of the distribution chosen to be the mode, as well as for other Pearson distributions: types I through VII. Elderton also included a number of appendixes, including one appendix ("II") on the beta and gamma functions. In later editions, Elderton added equations for the origin of the distribution chosen to be the mean, and analysis of Pearson distributions VIII through XII.
</p><p>As remarked by Bowman and Shenton<sup id="cite_ref-BowmanShenton_43-2" class="reference"><a href="#cite_note-BowmanShenton-43">&#91;43&#93;</a></sup> "Fisher and Pearson had a difference of opinion in the approach to (parameter) estimation, in particular relating to (Pearson's method of) moments and (Fisher's method of) maximum likelihood in the case of the Beta distribution." Also according to Bowman and Shenton, "the case of a Type I (beta distribution) model being the center of the controversy was pure serendipity. A more difficult model of 4 parameters would have been hard to find." The long running public conflict of Fisher with Karl Pearson can be followed in a number of articles in prestigious journals. For example, concerning the estimation of the four parameters for the beta distribution, and Fisher's criticism of Pearson's method of moments as being arbitrary, see Pearson's article "Method of moments and method of maximum likelihood" <sup id="cite_ref-Pearson1936_44-1" class="reference"><a href="#cite_note-Pearson1936-44">&#91;44&#93;</a></sup> (published three years after his retirement from University College, London, where his position had been divided between Fisher and Pearson's son Egon) in which Pearson writes "I read (Koshai's paper in the Journal of the Royal Statistical Society, 1933) which as far as I am aware is the only case at present published of the application of Professor Fisher's method. To my astonishment that method depends on first working out the constants of the frequency curve by the (Pearson) Method of Moments and then superposing on it, by what Fisher terms "the Method of Maximum Likelihood" a further approximation to obtain, what he holds, he will thus get, "more efficient values" of the curve constants".
</p><p>David and Edwards's treatise on the history of statistics<sup id="cite_ref-David_History_80-0" class="reference"><a href="#cite_note-David_History-80">&#91;80&#93;</a></sup> cites the first modern treatment of the beta distribution, in 1911,<sup id="cite_ref-81" class="reference"><a href="#cite_note-81">&#91;81&#93;</a></sup> using the beta designation that has become standard, due to <a href="/wiki/Corrado_Gini" title="Corrado Gini">Corrado Gini</a>, an Italian <a href="/wiki/Statistician" title="Statistician">statistician</a>, <a href="/wiki/Demography" title="Demography">demographer</a>, and <a href="/wiki/Sociology" title="Sociology">sociologist</a>, who developed the <a href="/wiki/Gini_coefficient" title="Gini coefficient">Gini coefficient</a>. <a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">N.L.Johnson</a> and <a href="/wiki/Samuel_Kotz" title="Samuel Kotz">S.Kotz</a>, in their comprehensive and very informative monograph<sup id="cite_ref-82" class="reference"><a href="#cite_note-82">&#91;82&#93;</a></sup> on leading historical personalities in statistical sciences credit <a href="/wiki/Corrado_Gini" title="Corrado Gini">Corrado Gini</a><sup id="cite_ref-83" class="reference"><a href="#cite_note-83">&#91;83&#93;</a></sup> as "an early Bayesian...who dealt with the problem of eliciting the parameters of an initial Beta distribution, by singling out techniques which anticipated the advent of the so-called empirical Bayes approach."
</p>
<h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=75" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1011085734">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist">
<div class="mw-references-wrap mw-references-columns"><ol class="references">
<li id="cite_note-JKB-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-JKB_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JKB_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-JKB_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-JKB_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-JKB_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-JKB_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-JKB_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-JKB_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-JKB_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-JKB_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-JKB_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-JKB_1-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-JKB_1-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-JKB_1-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-JKB_1-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-JKB_1-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-JKB_1-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-JKB_1-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-JKB_1-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-JKB_1-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-JKB_1-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-JKB_1-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-JKB_1-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-JKB_1-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-JKB_1-24"><sup><i><b>y</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1133582631">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite id="CITEREFJohnsonKotzBalakrishnan1995" class="citation book cs1">Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1995). "Chapter 25:Beta Distributions". <i>Continuous Univariate Distributions Vol. 2</i> (2nd&#160;ed.). Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-58494-0" title="Special:BookSources/978-0-471-58494-0"><bdi>978-0-471-58494-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+25%3ABeta+Distributions&amp;rft.btitle=Continuous+Univariate+Distributions+Vol.+2&amp;rft.edition=2nd&amp;rft.pub=Wiley&amp;rft.date=1995&amp;rft.isbn=978-0-471-58494-0&amp;rft.aulast=Johnson&amp;rft.aufirst=Norman+L.&amp;rft.au=Kotz%2C+Samuel&amp;rft.au=Balakrishnan%2C+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+
</li>
<li id="cite_note-Mathematical_Statistics_with_MATHEMATICA-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mathematical_Statistics_with_MATHEMATICA_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mathematical_Statistics_with_MATHEMATICA_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFRoseSmith2002" class="citation book cs1">Rose, Colin; Smith, Murray D. (2002). <i>Mathematical Statistics with MATHEMATICA</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0387952345" title="Special:BookSources/978-0387952345"><bdi>978-0387952345</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Statistics+with+MATHEMATICA&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=978-0387952345&amp;rft.aulast=Rose&amp;rft.aufirst=Colin&amp;rft.au=Smith%2C+Murray+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Kruschke2011-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kruschke2011_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kruschke2011_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kruschke2011_3-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKruschke2011" class="citation book cs1"><a href="/wiki/John_K._Kruschke" title="John K. Kruschke">Kruschke, John K.</a> (2011). <i>Doing Bayesian data analysis: A tutorial with R and BUGS</i>. Academic Press / Elsevier. p.&#160;83. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0123814852" title="Special:BookSources/978-0123814852"><bdi>978-0123814852</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Doing+Bayesian+data+analysis%3A+A+tutorial+with+R+and+BUGS&amp;rft.pages=83&amp;rft.pub=Academic+Press+%2F+Elsevier&amp;rft.date=2011&amp;rft.isbn=978-0123814852&amp;rft.aulast=Kruschke&amp;rft.aufirst=John+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-BergerDecisionTheory-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-BergerDecisionTheory_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BergerDecisionTheory_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBerger2010" class="citation book cs1">Berger, James O. (2010). <i>Statistical Decision Theory and Bayesian Analysis</i> (2nd&#160;ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1441930743" title="Special:BookSources/978-1441930743"><bdi>978-1441930743</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Decision+Theory+and+Bayesian+Analysis&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2010&amp;rft.isbn=978-1441930743&amp;rft.aulast=Berger&amp;rft.aufirst=James+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Feller-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Feller_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Feller_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Feller_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Feller_5-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFFeller1971" class="citation book cs1">Feller, William (1971). <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr00fell"><i>An Introduction to Probability Theory and Its Applications, Vol. 2</i></a>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471257097" title="Special:BookSources/978-0471257097"><bdi>978-0471257097</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Vol.+2&amp;rft.pub=Wiley&amp;rft.date=1971&amp;rft.isbn=978-0471257097&amp;rft.aulast=Feller&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontopr00fell&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Kruschke2015-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kruschke2015_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKruschke2015" class="citation book cs1"><a href="/wiki/John_K._Kruschke" title="John K. Kruschke">Kruschke, John K.</a> (2015). <i>Doing Bayesian Data Analysis: A Tutorial with R, JAGS and Stan</i>. Academic Press / Elsevier. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-405888-0" title="Special:BookSources/978-0-12-405888-0"><bdi>978-0-12-405888-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Doing+Bayesian+Data+Analysis%3A+A+Tutorial+with+R%2C+JAGS+and+Stan&amp;rft.pub=Academic+Press+%2F+Elsevier&amp;rft.date=2015&amp;rft.isbn=978-0-12-405888-0&amp;rft.aulast=Kruschke&amp;rft.aufirst=John+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Wadsworth-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wadsworth_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wadsworth_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFWadsworth1960" class="citation book cs1">Wadsworth, George P. and Joseph Bryan (1960). <span class="cs1-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr0000wads"><i>Introduction to Probability and Random Variables</i></a></span>. McGraw-Hill.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Probability+and+Random+Variables&amp;rft.pub=McGraw-Hill&amp;rft.date=1960&amp;rft.aulast=Wadsworth&amp;rft.aufirst=George+P.+and+Joseph+Bryan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontopr0000wads&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Handbook_of_Beta_Distribution-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Handbook_of_Beta_Distribution_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Handbook_of_Beta_Distribution_8-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGupta2004" class="citation book cs1">Gupta, Arjun K., ed. (2004). <i>Handbook of Beta Distribution and Its Applications</i>. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0824753962" title="Special:BookSources/978-0824753962"><bdi>978-0824753962</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+of+Beta+Distribution+and+Its+Applications&amp;rft.pub=CRC+Press&amp;rft.date=2004&amp;rft.isbn=978-0824753962&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Kerman2011-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kerman2011_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kerman2011_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Kerman J (2011) "A closed-form approximation for the median of the beta distribution". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<a href="https://arxiv.org/abs/1111.0433v1" class="extiw" title="arxiv:1111.0433v1">1111.0433v1</a></span>
</li>
<li id="cite_note-MostellerTukey-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-MostellerTukey_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFMosteller1977" class="citation book cs1">Mosteller, Frederick and John Tukey (1977). <span class="cs1-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/dataanalysisregr0000most"><i>Data Analysis and Regression: A Second Course in Statistics</i></a></span>. Addison-Wesley Pub. Co. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977dars.book.....M">1977dars.book.....M</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0201048544" title="Special:BookSources/978-0201048544"><bdi>978-0201048544</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Data+Analysis+and+Regression%3A+A+Second+Course+in+Statistics&amp;rft.pub=Addison-Wesley+Pub.+Co.&amp;rft.date=1977&amp;rft_id=info%3Abibcode%2F1977dars.book.....M&amp;rft.isbn=978-0201048544&amp;rft.aulast=Mosteller&amp;rft.aufirst=Frederick+and+John+Tukey&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdataanalysisregr0000most&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-WillyFeller1-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-WillyFeller1_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-WillyFeller1_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFFeller1968" class="citation book cs1">Feller, William (1968). <i>An Introduction to Probability Theory and Its Applications</i>. Vol.&#160;1 (3rd&#160;ed.). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471257080" title="Special:BookSources/978-0471257080"><bdi>978-0471257080</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Probability+Theory+and+Its+Applications&amp;rft.edition=3rd&amp;rft.date=1968&amp;rft.isbn=978-0471257080&amp;rft.aulast=Feller&amp;rft.aufirst=William&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Philip J. Fleming and John J. Wallace. <i>How not to lie with statistics: the correct way to summarize benchmark results</i>. Communications of the ACM, 29(3):218221, March 1986.</span>
</li>
<li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm">"NIST/SEMATECH e-Handbook of Statistical Methods 1.3.6.6.17. Beta Distribution"</a>. <i><a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">National Institute of Standards and Technology</a> Information Technology Laboratory</i>. April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">May 31,</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=National+Institute+of+Standards+and+Technology+Information+Technology+Laboratory&amp;rft.atitle=NIST%2FSEMATECH+e-Handbook+of+Statistical+Methods+1.3.6.6.17.+Beta+Distribution&amp;rft.date=2012-04&amp;rft_id=http%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Feda%2Fsection3%2Feda366h.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Oguamanam-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Oguamanam_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFOguamanamMartinHuissoon1995" class="citation journal cs1">Oguamanam, D.C.D.; Martin, H. R.; Huissoon, J. P. (1995). "On the application of the beta distribution to gear damage analysis". <i>Applied Acoustics</i>. <b>45</b> (3): 247261. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0003-682X%2895%2900001-P">10.1016/0003-682X(95)00001-P</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Acoustics&amp;rft.atitle=On+the+application+of+the+beta+distribution+to+gear+damage+analysis&amp;rft.volume=45&amp;rft.issue=3&amp;rft.pages=247-261&amp;rft.date=1995&amp;rft_id=info%3Adoi%2F10.1016%2F0003-682X%2895%2900001-P&amp;rft.aulast=Oguamanam&amp;rft.aufirst=D.C.D.&amp;rft.au=Martin%2C+H.+R.&amp;rft.au=Huissoon%2C+J.+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Liang-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Liang_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFZhiqiang_LiangJianming_WeiJunyu_ZhaoHaitao_Liu2008" class="citation journal cs1">Zhiqiang Liang; Jianming Wei; Junyu Zhao; Haitao Liu; Baoqing Li; Jie Shen; Chunlei Zheng (27 August 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705491">"The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals"</a>. <i>Sensors</i>. <b>8</b> (8): 51065119. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008Senso...8.5106L">2008Senso...8.5106L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fs8085106">10.3390/s8085106</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705491">3705491</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27873804">27873804</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sensors&amp;rft.atitle=The+Statistical+Meaning+of+Kurtosis+and+Its+New+Application+to+Identification+of+Persons+Based+on+Seismic+Signals&amp;rft.volume=8&amp;rft.issue=8&amp;rft.pages=5106-5119&amp;rft.date=2008-08-27&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3705491%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F27873804&amp;rft_id=info%3Adoi%2F10.3390%2Fs8085106&amp;rft_id=info%3Abibcode%2F2008Senso...8.5106L&amp;rft.au=Zhiqiang+Liang&amp;rft.au=Jianming+Wei&amp;rft.au=Junyu+Zhao&amp;rft.au=Haitao+Liu&amp;rft.au=Baoqing+Li&amp;rft.au=Jie+Shen&amp;rft.au=Chunlei+Zheng&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3705491&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Kenney_and_Keeping-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kenney_and_Keeping_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKenney1951" class="citation book cs1">Kenney, J. F., and E. S. Keeping (1951). <i>Mathematics of Statistics Part Two, 2nd edition</i>. D. Van Nostrand Company Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+of+Statistics+Part+Two%2C+2nd+edition&amp;rft.pub=D.+Van+Nostrand+Company+Inc.&amp;rft.date=1951&amp;rft.aulast=Kenney&amp;rft.aufirst=J.+F.%2C+and+E.+S.+Keeping&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-Abramowitz-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Abramowitz_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Abramowitz_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Abramowitz_17-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Abramowitz_17-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFAbramowitz1965" class="citation book cs1">Abramowitz, Milton and Irene A. Stegun (1965). <a rel="nofollow" class="external text" href="https://archive.org/details/handbookofmathe000abra"><i>Handbook Of Mathematical Functions With Formulas, Graphs, And Mathematical Tables</i></a>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-61272-0" title="Special:BookSources/978-0-486-61272-0"><bdi>978-0-486-61272-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Handbook+Of+Mathematical+Functions+With+Formulas%2C+Graphs%2C+And+Mathematical+Tables&amp;rft.pub=Dover&amp;rft.date=1965&amp;rft.isbn=978-0-486-61272-0&amp;rft.aulast=Abramowitz&amp;rft.aufirst=Milton+and+Irene+A.+Stegun&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhandbookofmathe000abra&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Weisstein.Kurtosi-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weisstein.Kurtosi_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFWeisstein." class="citation web cs1">Weisstein., Eric W. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Kurtosis.html">"Kurtosis"</a>. MathWorld--A Wolfram Web Resource<span class="reference-accessdate">. Retrieved <span class="nowrap">13 August</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Kurtosis&amp;rft.pub=MathWorld--A+Wolfram+Web+Resource&amp;rft.aulast=Weisstein.&amp;rft.aufirst=Eric+W.&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FKurtosis.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Panik-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Panik_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Panik_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPanik2005" class="citation book cs1">Panik, Michael J (2005). <i>Advanced Statistics from an Elementary Point of View</i>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0120884940" title="Special:BookSources/978-0120884940"><bdi>978-0120884940</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Statistics+from+an+Elementary+Point+of+View&amp;rft.pub=Academic+Press&amp;rft.date=2005&amp;rft.isbn=978-0120884940&amp;rft.aulast=Panik&amp;rft.aufirst=Michael+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Pearson-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pearson_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pearson_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Pearson_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Pearson_20-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Pearson_20-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Pearson_20-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1916" class="citation journal cs1"><a href="/wiki/Karl_Pearson" title="Karl Pearson">Pearson, Karl</a> (1916). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1916.0009">"Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation"</a>. <i>Philosophical Transactions of the Royal Society A</i>. <b>216</b> (538548): 429457. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1916RSPTA.216..429P">1916RSPTA.216..429P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1916.0009">10.1098/rsta.1916.0009</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/91092">91092</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+A&amp;rft.atitle=Mathematical+contributions+to+the+theory+of+evolution%2C+XIX%3A+Second+supplement+to+a+memoir+on+skew+variation&amp;rft.volume=216&amp;rft.issue=538%E2%80%93548&amp;rft.pages=429-457&amp;rft.date=1916&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F91092%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1916.0009&amp;rft_id=info%3Abibcode%2F1916RSPTA.216..429P&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frsta.1916.0009&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Zwillinger_2014-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zwillinger_2014_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGradshteynRyzhikGeronimusTseytlin2015" class="citation book cs1"><a href="/wiki/Izrail_Solomonovich_Gradshteyn" class="mw-redirect" title="Izrail Solomonovich Gradshteyn">Gradshteyn, Izrail Solomonovich</a>; <a href="/wiki/Iosif_Moiseevich_Ryzhik" class="mw-redirect" title="Iosif Moiseevich Ryzhik">Ryzhik, Iosif Moiseevich</a>; <a href="/wiki/Yuri_Veniaminovich_Geronimus" class="mw-redirect" title="Yuri Veniaminovich Geronimus">Geronimus, Yuri Veniaminovich</a>; <a href="/wiki/Michail_Yulyevich_Tseytlin" class="mw-redirect" title="Michail Yulyevich Tseytlin">Tseytlin, Michail Yulyevich</a>; Jeffrey, Alan (2015) [October 2014]. Zwillinger, Daniel; <a href="/wiki/Victor_Hugo_Moll" class="mw-redirect" title="Victor Hugo Moll">Moll, Victor Hugo</a> (eds.). <a href="/wiki/Gradshteyn_and_Ryzhik" title="Gradshteyn and Ryzhik"><i>Table of Integrals, Series, and Products</i></a>. Translated by Scripta Technica, Inc. (8&#160;ed.). <a href="/wiki/Academic_Press,_Inc." class="mw-redirect" title="Academic Press, Inc.">Academic Press, Inc.</a> <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-384933-5" title="Special:BookSources/978-0-12-384933-5"><bdi>978-0-12-384933-5</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2014010276">2014010276</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Table+of+Integrals%2C+Series%2C+and+Products&amp;rft.edition=8&amp;rft.pub=Academic+Press%2C+Inc.&amp;rft.date=2015&amp;rft_id=info%3Alccn%2F2014010276&amp;rft.isbn=978-0-12-384933-5&amp;rft.aulast=Gradshteyn&amp;rft.aufirst=Izrail+Solomonovich&amp;rft.au=Ryzhik%2C+Iosif+Moiseevich&amp;rft.au=Geronimus%2C+Yuri+Veniaminovich&amp;rft.au=Tseytlin%2C+Michail+Yulyevich&amp;rft.au=Jeffrey%2C+Alan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBillingsley1995" class="citation book cs1">Billingsley, Patrick (1995). "30". <i>Probability and measure</i> (3rd&#160;ed.). Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-00710-4" title="Special:BookSources/978-0-471-00710-4"><bdi>978-0-471-00710-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=30&amp;rft.btitle=Probability+and+measure&amp;rft.edition=3rd&amp;rft.pub=Wiley-Interscience&amp;rft.date=1995&amp;rft.isbn=978-0-471-00710-4&amp;rft.aulast=Billingsley&amp;rft.aufirst=Patrick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-MacKay-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-MacKay_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-MacKay_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFMacKay2003" class="citation book cs1">MacKay, David (2003). <i>Information Theory, Inference and Learning Algorithms</i>. Cambridge University Press; First Edition. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003itil.book.....M">2003itil.book.....M</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521642989" title="Special:BookSources/978-0521642989"><bdi>978-0521642989</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Information+Theory%2C+Inference+and+Learning+Algorithms&amp;rft.pub=Cambridge+University+Press%3B+First+Edition&amp;rft.date=2003&amp;rft_id=info%3Abibcode%2F2003itil.book.....M&amp;rft.isbn=978-0521642989&amp;rft.aulast=MacKay&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-JohnsonLogInv-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-JohnsonLogInv_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JohnsonLogInv_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJohnson1949" class="citation journal cs1">Johnson, N.L. (1949). <a rel="nofollow" class="external text" href="http://dml.cz/bitstream/handle/10338.dmlcz/135506/Kybernetika_39-2003-1_3.pdf">"Systems of frequency curves generated by methods of translation"</a> <span class="cs1-format">(PDF)</span>. <i>Biometrika</i>. <b>36</b> (12): 149176. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbiomet%2F36.1-2.149">10.1093/biomet/36.1-2.149</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10338.dmlcz%2F135506">10338.dmlcz/135506</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18132090">18132090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Systems+of+frequency+curves+generated+by+methods+of+translation&amp;rft.volume=36&amp;rft.issue=1%E2%80%932&amp;rft.pages=149-176&amp;rft.date=1949&amp;rft_id=info%3Ahdl%2F10338.dmlcz%2F135506&amp;rft_id=info%3Apmid%2F18132090&amp;rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F36.1-2.149&amp;rft.aulast=Johnson&amp;rft.aufirst=N.L.&amp;rft_id=http%3A%2F%2Fdml.cz%2Fbitstream%2Fhandle%2F10338.dmlcz%2F135506%2FKybernetika_39-2003-1_3.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFVerdugo_LazoRathie1978" class="citation journal cs1">Verdugo Lazo, A. C. G.; Rathie, P. N. (1978). "On the entropy of continuous probability distributions". <i>IEEE Trans. Inf. Theory</i>. <b>24</b> (1): 120122. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIT.1978.1055832">10.1109/TIT.1978.1055832</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Inf.+Theory&amp;rft.atitle=On+the+entropy+of+continuous+probability+distributions&amp;rft.volume=24&amp;rft.issue=1&amp;rft.pages=120-122&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1109%2FTIT.1978.1055832&amp;rft.aulast=Verdugo+Lazo&amp;rft.aufirst=A.+C.+G.&amp;rft.au=Rathie%2C+P.+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFShannon1948" class="citation journal cs1">Shannon, Claude E. (1948). "A Mathematical Theory of Communication". <i>Bell System Technical Journal</i>. <b>27</b> (4): 623656. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fj.1538-7305.1948.tb01338.x">10.1002/j.1538-7305.1948.tb01338.x</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bell+System+Technical+Journal&amp;rft.atitle=A+Mathematical+Theory+of+Communication&amp;rft.volume=27&amp;rft.issue=4&amp;rft.pages=623-656&amp;rft.date=1948&amp;rft_id=info%3Adoi%2F10.1002%2Fj.1538-7305.1948.tb01338.x&amp;rft.aulast=Shannon&amp;rft.aufirst=Claude+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Cover_and_Thomas-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cover_and_Thomas_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cover_and_Thomas_27-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cover_and_Thomas_27-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFCover2006" class="citation book cs1">Cover, Thomas M. and Joy A. Thomas (2006). <i>Elements of Information Theory 2nd Edition (Wiley Series in Telecommunications and Signal Processing)</i>. Wiley-Interscience; 2 edition. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471241959" title="Special:BookSources/978-0471241959"><bdi>978-0471241959</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Information+Theory+2nd+Edition+%28Wiley+Series+in+Telecommunications+and+Signal+Processing%29&amp;rft.pub=Wiley-Interscience%3B+2+edition&amp;rft.date=2006&amp;rft.isbn=978-0471241959&amp;rft.aulast=Cover&amp;rft.aufirst=Thomas+M.+and+Joy+A.+Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Plunkett-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Plunkett_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPlunkett1997" class="citation book cs1">Plunkett, Kim, and Jeffrey Elman (1997). <span class="cs1-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/exercisesinrethi0000plun"><i>Exercises in Rethinking Innateness: A Handbook for Connectionist Simulations (Neural Network Modeling and Connectionism)</i></a></span>. A Bradford Book. p.&#160;166. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0262661058" title="Special:BookSources/978-0262661058"><bdi>978-0262661058</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Exercises+in+Rethinking+Innateness%3A+A+Handbook+for+Connectionist+Simulations+%28Neural+Network+Modeling+and+Connectionism%29&amp;rft.pages=166&amp;rft.pub=A+Bradford+Book&amp;rft.date=1997&amp;rft.isbn=978-0262661058&amp;rft.aulast=Plunkett&amp;rft.aufirst=Kim%2C+and+Jeffrey+Elman&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fexercisesinrethi0000plun&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-Nallapati-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nallapati_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFNallapati2006" class="citation thesis cs1">Nallapati, Ramesh (2006). <a rel="nofollow" class="external text" href="http://maroo.cs.umass.edu/pub/web/getpdf.php?id=679"><i>The smoothed dirichlet distribution: understanding cross-entropy ranking in information retrieval</i></a> (Thesis). Computer Science Dept., University of Massachusetts Amherst.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=The+smoothed+dirichlet+distribution%3A+understanding+cross-entropy+ranking+in+information+retrieval&amp;rft.inst=Computer+Science+Dept.%2C+University+of+Massachusetts+Amherst&amp;rft.date=2006&amp;rft.aulast=Nallapati&amp;rft.aufirst=Ramesh&amp;rft_id=http%3A%2F%2Fmaroo.cs.umass.edu%2Fpub%2Fweb%2Fgetpdf.php%3Fid%3D679&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Egon-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-Egon_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Egon_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1969" class="citation journal cs1 cs1-prop-long-vol">Pearson, Egon S. (July 1969). <a rel="nofollow" class="external text" href="http://www.smu.edu/Dedman/Academics/Departments/Statistics/Research/TechnicalReports">"Some historical reflections traced through the development of the use of frequency curves"</a>. <i>THEMIS Statistical Analysis Research Program, Technical Report 38</i>. Office of Naval Research, Contract N000014-68-A-0515 (Project NR 042260).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=THEMIS+Statistical+Analysis+Research+Program%2C+Technical+Report+38&amp;rft.atitle=Some+historical+reflections+traced+through+the+development+of+the+use+of+frequency+curves&amp;rft.volume=Office+of+Naval+Research%2C+Contract+N000014-68-A-0515&amp;rft.issue=Project+NR+042%E2%80%93260&amp;rft.date=1969-07&amp;rft.aulast=Pearson&amp;rft.aufirst=Egon+S.&amp;rft_id=http%3A%2F%2Fwww.smu.edu%2FDedman%2FAcademics%2FDepartments%2FStatistics%2FResearch%2FTechnicalReports&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Hahn_and_Shapiro-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hahn_and_Shapiro_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFHahnShapiro1994" class="citation book cs1">Hahn, Gerald J.; Shapiro, S. (1994). <i>Statistical Models in Engineering (Wiley Classics Library)</i>. Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471040651" title="Special:BookSources/978-0471040651"><bdi>978-0471040651</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Models+in+Engineering+%28Wiley+Classics+Library%29&amp;rft.pub=Wiley-Interscience&amp;rft.date=1994&amp;rft.isbn=978-0471040651&amp;rft.aulast=Hahn&amp;rft.aufirst=Gerald+J.&amp;rft.au=Shapiro%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Pearson1895-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pearson1895_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pearson1895_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1895" class="citation journal cs1"><a href="/wiki/Karl_Pearson" title="Karl Pearson">Pearson, Karl</a> (1895). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1895.0010">"Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material"</a>. <i>Philosophical Transactions of the Royal Society</i>. <b>186</b>: 343414. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1895RSPTA.186..343P">1895RSPTA.186..343P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsta.1895.0010">10.1098/rsta.1895.0010</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/90649">90649</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=Contributions+to+the+mathematical+theory+of+evolution%2C+II%3A+Skew+variation+in+homogeneous+material&amp;rft.volume=186&amp;rft.pages=343-414&amp;rft.date=1895&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F90649%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1098%2Frsta.1895.0010&amp;rft_id=info%3Abibcode%2F1895RSPTA.186..343P&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frsta.1895.0010&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBuchananRockwaySternbergMai2016" class="citation book cs1">Buchanan, K.; Rockway, J.; Sternberg, O.; Mai, N. N. (May 2016). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1279364">"Sum-difference beamforming for radar applications using circularly tapered random arrays"</a>. <i>2016 IEEE Radar Conference (RadarConf)</i>. pp.&#160;15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FRADAR.2016.7485289">10.1109/RADAR.2016.7485289</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-5090-0863-6" title="Special:BookSources/978-1-5090-0863-6"><bdi>978-1-5090-0863-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:32525626">32525626</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sum-difference+beamforming+for+radar+applications+using+circularly+tapered+random+arrays&amp;rft.btitle=2016+IEEE+Radar+Conference+%28RadarConf%29&amp;rft.pages=1-5&amp;rft.date=2016-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A32525626%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FRADAR.2016.7485289&amp;rft.isbn=978-1-5090-0863-6&amp;rft.aulast=Buchanan&amp;rft.aufirst=K.&amp;rft.au=Rockway%2C+J.&amp;rft.au=Sternberg%2C+O.&amp;rft.au=Mai%2C+N.+N.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1279364&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBuchananFloresWheelandJensen2017" class="citation book cs1">Buchanan, K.; Flores, C.; Wheeland, S.; Jensen, J.; Grayson, D.; Huff, G. (May 2017). "Transmit beamforming for radar applications using circularly tapered random arrays". <i>2017 IEEE Radar Conference (RadarConf)</i>. pp.&#160;01120117. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FRADAR.2017.7944181">10.1109/RADAR.2017.7944181</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4673-8823-8" title="Special:BookSources/978-1-4673-8823-8"><bdi>978-1-4673-8823-8</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:38429370">38429370</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Transmit+beamforming+for+radar+applications+using+circularly+tapered+random+arrays&amp;rft.btitle=2017+IEEE+Radar+Conference+%28RadarConf%29&amp;rft.pages=0112-0117&amp;rft.date=2017-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A38429370%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FRADAR.2017.7944181&amp;rft.isbn=978-1-4673-8823-8&amp;rft.aulast=Buchanan&amp;rft.aufirst=K.&amp;rft.au=Flores%2C+C.&amp;rft.au=Wheeland%2C+S.&amp;rft.au=Jensen%2C+J.&amp;rft.au=Grayson%2C+D.&amp;rft.au=Huff%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFRyan2014" class="citation journal cs1">Ryan, Buchanan, Kristopher (2014-05-29). <a rel="nofollow" class="external text" href="http://oaktrust.library.tamu.edu/handle/1969.1/157918">"Theory and Applications of Aperiodic (Random) Phased Arrays"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Theory+and+Applications+of+Aperiodic+%28Random%29+Phased+Arrays&amp;rft.date=2014-05-29&amp;rft.aulast=Ryan&amp;rft.aufirst=Buchanan%2C+Kristopher&amp;rft_id=http%3A%2F%2Foaktrust.library.tamu.edu%2Fhandle%2F1969.1%2F157918&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: </span><span class="cs1-visible-error citation-comment">Cite journal requires <code class="cs1-code">&#124;journal=</code> (<a href="/wiki/Help:CS1_errors#missing_periodical" title="Help:CS1 errors">help</a>)</span><span class="cs1-maint citation-comment">CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-NewPERT-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-NewPERT_36-0">^</a></b></span> <span class="reference-text">Herrerías-Velasco, José Manuel and Herrerías-Pleguezuelo, Rafael and René van Dorp, Johan. (2011). Revisiting the PERT mean and Variance. European Journal of Operational Research (210), p. 448&#8211;451.</span>
</li>
<li id="cite_note-Malcolm-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-Malcolm_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Malcolm_37-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFMalcolmRoseboomClarkFazar1958" class="citation journal cs1">Malcolm, D. G.; Roseboom, J. H.; Clark, C. E.; Fazar, W. (SeptemberOctober 1958). "Application of a Technique for Research and Development Program Evaluation". <i>Operations Research</i>. <b>7</b> (5): 646669. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1287%2Fopre.7.5.646">10.1287/opre.7.5.646</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/0030-364X">0030-364X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Operations+Research&amp;rft.atitle=Application+of+a+Technique+for+Research+and+Development+Program+Evaluation&amp;rft.volume=7&amp;rft.issue=5&amp;rft.pages=646-669&amp;rft.date=1958-09%2F1958-10&amp;rft_id=info%3Adoi%2F10.1287%2Fopre.7.5.646&amp;rft.issn=0030-364X&amp;rft.aulast=Malcolm&amp;rft.aufirst=D.+G.&amp;rft.au=Roseboom%2C+J.+H.&amp;rft.au=Clark%2C+C.+E.&amp;rft.au=Fazar%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-David1-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-David1_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-David1_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-David1_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-David1_38-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">David, H. A., Nagaraja, H. N. (2003) <i>Order Statistics</i> (3rd Edition). Wiley, New Jersey pp 458. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-38926-9" title="Special:BookSources/0-471-38926-9">0-471-38926-9</a></span>
</li>
<li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.statlect.com/probability-distributions/beta-distribution">"Beta distribution"</a>. <i>www.statlect.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.statlect.com&amp;rft.atitle=Beta+distribution&amp;rft_id=https%3A%2F%2Fwww.statlect.com%2Fprobability-distributions%2Fbeta-distribution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm">"1.3.6.6.17. Beta Distribution"</a>. <i>www.itl.nist.gov</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.itl.nist.gov&amp;rft.atitle=1.3.6.6.17.+Beta+Distribution&amp;rft_id=https%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Feda%2Fsection3%2Feda366h.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Elderton1906-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-Elderton1906_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Elderton1906_41-7"><sup><i><b>h</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFElderton1906" class="citation book cs1">Elderton, William Palin (1906). <a rel="nofollow" class="external text" href="https://archive.org/details/frequencycurvesc00elderich"><i>Frequency-Curves and Correlation</i></a>. Charles and Edwin Layton (London).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Frequency-Curves+and+Correlation&amp;rft.pub=Charles+and+Edwin+Layton+%28London%29&amp;rft.date=1906&amp;rft.aulast=Elderton&amp;rft.aufirst=William+Palin&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffrequencycurvesc00elderich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Elderton_and_Johnson-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-Elderton_and_Johnson_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFElderton2009" class="citation book cs1">Elderton, William Palin and Norman Lloyd Johnson (2009). <i>Systems of Frequency Curves</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521093361" title="Special:BookSources/978-0521093361"><bdi>978-0521093361</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Systems+of+Frequency+Curves&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2009&amp;rft.isbn=978-0521093361&amp;rft.aulast=Elderton&amp;rft.aufirst=William+Palin+and+Norman+Lloyd+Johnson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-BowmanShenton-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-BowmanShenton_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BowmanShenton_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-BowmanShenton_43-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBowmanShenton,_L._R.2007" class="citation journal cs1"><a href="/wiki/Kimiko_O._Bowman" title="Kimiko O. Bowman">Bowman, K. O.</a>; Shenton, L. R. (2007). <a rel="nofollow" class="external text" href="http://www.csm.ornl.gov/~bowman/fjts232.pdf">"The beta distribution, moment method, Karl Pearson and R.A. Fisher"</a> <span class="cs1-format">(PDF)</span>. <i>Far East J. Theo. Stat</i>. <b>23</b> (2): 133164.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Far+East+J.+Theo.+Stat.&amp;rft.atitle=The+beta+distribution%2C+moment+method%2C+Karl+Pearson+and+R.A.+Fisher&amp;rft.volume=23&amp;rft.issue=2&amp;rft.pages=133-164&amp;rft.date=2007&amp;rft.aulast=Bowman&amp;rft.aufirst=K.+O.&amp;rft.au=Shenton%2C+L.+R.&amp;rft_id=http%3A%2F%2Fwww.csm.ornl.gov%2F~bowman%2Ffjts232.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Pearson1936-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pearson1936_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pearson1936_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1936" class="citation journal cs1">Pearson, Karl (June 1936). "Method of moments and method of maximum likelihood". <i>Biometrika</i>. <b>28</b> (1/2): 3459. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2334123">10.2307/2334123</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2334123">2334123</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Method+of+moments+and+method+of+maximum+likelihood&amp;rft.volume=28&amp;rft.issue=1%2F2&amp;rft.pages=34-59&amp;rft.date=1936-06&amp;rft_id=info%3Adoi%2F10.2307%2F2334123&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2334123%23id-name%3DJSTOR&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Joanes_and_Gill-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-Joanes_and_Gill_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Joanes_and_Gill_45-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Joanes_and_Gill_45-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJoanesC._A._Gill1998" class="citation journal cs1">Joanes, D. N.; C. A. Gill (1998). "Comparing measures of sample skewness and kurtosis". <i>The Statistician</i>. <b>47</b> (Part 1): 183189. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2F1467-9884.00122">10.1111/1467-9884.00122</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Statistician&amp;rft.atitle=Comparing+measures+of+sample+skewness+and+kurtosis&amp;rft.volume=47&amp;rft.issue=Part+1&amp;rft.pages=183-189&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.1111%2F1467-9884.00122&amp;rft.aulast=Joanes&amp;rft.aufirst=D.+N.&amp;rft.au=C.+A.+Gill&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBeckmanG._L._Tietjen1978" class="citation journal cs1">Beckman, R. J.; G. L. Tietjen (1978). "Maximum likelihood estimation for the beta distribution". <i>Journal of Statistical Computation and Simulation</i>. <b>7</b> (34): 253258. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00949657808810232">10.1080/00949657808810232</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Statistical+Computation+and+Simulation&amp;rft.atitle=Maximum+likelihood+estimation+for+the+beta+distribution&amp;rft.volume=7&amp;rft.issue=3%E2%80%934&amp;rft.pages=253-258&amp;rft.date=1978&amp;rft_id=info%3Adoi%2F10.1080%2F00949657808810232&amp;rft.aulast=Beckman&amp;rft.aufirst=R.+J.&amp;rft.au=G.+L.+Tietjen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGnanadesikan1967" class="citation journal cs1">Gnanadesikan, R.,Pinkham and Hughes (1967). "Maximum likelihood estimation of the parameters of the beta distribution from smallest order statistics". <i>Technometrics</i>. <b>9</b> (4): 607620. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1266199">10.2307/1266199</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1266199">1266199</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technometrics&amp;rft.atitle=Maximum+likelihood+estimation+of+the+parameters+of+the+beta+distribution+from+smallest+order+statistics&amp;rft.volume=9&amp;rft.issue=4&amp;rft.pages=607-620&amp;rft.date=1967&amp;rft_id=info%3Adoi%2F10.2307%2F1266199&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1266199%23id-name%3DJSTOR&amp;rft.aulast=Gnanadesikan&amp;rft.aufirst=R.%2CPinkham+and+Hughes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-invpsi.m-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-invpsi.m_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFFackler" class="citation web cs1">Fackler, Paul. <a rel="nofollow" class="external text" href="http://hips.seas.harvard.edu/content/inverse-digamma-function-matlab">"Inverse Digamma Function (Matlab)"</a>. Harvard University School of Engineering and Applied Sciences<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-08-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Inverse+Digamma+Function+%28Matlab%29&amp;rft.pub=Harvard+University+School+of+Engineering+and+Applied+Sciences&amp;rft.aulast=Fackler&amp;rft.aufirst=Paul&amp;rft_id=http%3A%2F%2Fhips.seas.harvard.edu%2Fcontent%2Finverse-digamma-function-matlab&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Silvey-49"><span class="mw-cite-backlink">^ <a href="#cite_ref-Silvey_49-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Silvey_49-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Silvey_49-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFSilvey1975" class="citation book cs1">Silvey, S.D. (1975). <i>Statistical Inference</i>. Chapman and Hal. p.&#160;40. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0412138201" title="Special:BookSources/978-0412138201"><bdi>978-0412138201</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Inference&amp;rft.pages=40&amp;rft.pub=Chapman+and+Hal&amp;rft.date=1975&amp;rft.isbn=978-0412138201&amp;rft.aulast=Silvey&amp;rft.aufirst=S.D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-EdwardsLikelihood-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-EdwardsLikelihood_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFEdwards1992" class="citation book cs1">Edwards, A. W. F. (1992). <i>Likelihood</i>. The Johns Hopkins University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0801844430" title="Special:BookSources/978-0801844430"><bdi>978-0801844430</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Likelihood&amp;rft.pub=The+Johns+Hopkins+University+Press&amp;rft.date=1992&amp;rft.isbn=978-0801844430&amp;rft.aulast=Edwards&amp;rft.aufirst=A.+W.+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Jaynes-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jaynes_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jaynes_51-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Jaynes_51-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Jaynes_51-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Jaynes_51-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Jaynes_51-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJaynes2003" class="citation book cs1">Jaynes, E.T. (2003). <i>Probability theory, the logic of science</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0521592710" title="Special:BookSources/978-0521592710"><bdi>978-0521592710</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+theory%2C+the+logic+of+science&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft.isbn=978-0521592710&amp;rft.aulast=Jaynes&amp;rft.aufirst=E.T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-CostaCover-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-CostaCover_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFCosta1983" class="citation book cs1">Costa, Max, and Cover, Thomas (September 1983). <a rel="nofollow" class="external text" href="https://isl.stanford.edu/people/cover/papers/transIT/0837cost.pdf"><i>On the similarity of the entropy power inequality and the Brunn Minkowski inequality</i></a> <span class="cs1-format">(PDF)</span>. Tech.Report 48, Dept. Statistics, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=On+the+similarity+of+the+entropy+power+inequality+and+the+Brunn+Minkowski+inequality&amp;rft.pub=Tech.Report+48%2C+Dept.+Statistics%2C+Stanford+University&amp;rft.date=1983-09&amp;rft.aulast=Costa&amp;rft.aufirst=Max%2C+and+Cover%2C+Thomas&amp;rft_id=https%3A%2F%2Fisl.stanford.edu%2Fpeople%2Fcover%2Fpapers%2FtransIT%2F0837cost.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-Aryal-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aryal_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aryal_53-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Aryal_53-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFAryalSaralees_Nadarajah2004" class="citation journal cs1">Aryal, Gokarna; Saralees Nadarajah (2004). <a rel="nofollow" class="external text" href="http://www.math.bas.bg/serdica/2004/2004-513-526.pdf">"Information matrix for beta distributions"</a> <span class="cs1-format">(PDF)</span>. <i>Serdica Mathematical Journal (Bulgarian Academy of Science)</i>. <b>30</b>: 513526.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Serdica+Mathematical+Journal+%28Bulgarian+Academy+of+Science%29&amp;rft.atitle=Information+matrix+for+beta+distributions&amp;rft.volume=30&amp;rft.pages=513-526&amp;rft.date=2004&amp;rft.aulast=Aryal&amp;rft.aufirst=Gokarna&amp;rft.au=Saralees+Nadarajah&amp;rft_id=http%3A%2F%2Fwww.math.bas.bg%2Fserdica%2F2004%2F2004-513-526.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Laplace-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-Laplace_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Laplace_54-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFLaplace1902" class="citation book cs1">Laplace, Pierre Simon, marquis de (1902). <a rel="nofollow" class="external text" href="https://archive.org/details/philosophicaless00lapliala"><i>A philosophical essay on probabilities</i></a>. New York&#160;: J. Wiley&#160;; London&#160;: Chapman &amp; Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60206-328-0" title="Special:BookSources/978-1-60206-328-0"><bdi>978-1-60206-328-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+philosophical+essay+on+probabilities&amp;rft.pub=New+York+%3A+J.+Wiley+%3B+London+%3A+Chapman+%26+Hall&amp;rft.date=1902&amp;rft.isbn=978-1-60206-328-0&amp;rft.aulast=Laplace&amp;rft.aufirst=Pierre+Simon%2C+marquis+de&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fphilosophicaless00lapliala&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-CoxRT-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-CoxRT_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFCox1961" class="citation book cs1">Cox, Richard T. (1961). <i>Algebra of Probable Inference</i>. The Johns Hopkins University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0801869822" title="Special:BookSources/978-0801869822"><bdi>978-0801869822</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra+of+Probable+Inference&amp;rft.pub=The+Johns+Hopkins+University+Press&amp;rft.date=1961&amp;rft.isbn=978-0801869822&amp;rft.aulast=Cox&amp;rft.aufirst=Richard+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-KeynesTreatise-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-KeynesTreatise_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-KeynesTreatise_56-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFKeynes2010" class="citation book cs1">Keynes, John Maynard (2010) [1921]. <i>A Treatise on Probability: The Connection Between Philosophy and the History of Science</i>. Wildside Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1434406965" title="Special:BookSources/978-1434406965"><bdi>978-1434406965</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Treatise+on+Probability%3A+The+Connection+Between+Philosophy+and+the+History+of+Science&amp;rft.pub=Wildside+Press&amp;rft.date=2010&amp;rft.isbn=978-1434406965&amp;rft.aulast=Keynes&amp;rft.aufirst=John+Maynard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-PearsonRuleSuccession-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-PearsonRuleSuccession_57-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1907" class="citation journal cs1">Pearson, Karl (1907). "On the Influence of Past Experience on Future Expectation". <i>Philosophical Magazine</i>. <b>6</b> (13): 365378.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Magazine&amp;rft.atitle=On+the+Influence+of+Past+Experience+on+Future+Expectation&amp;rft.volume=6&amp;rft.issue=13&amp;rft.pages=365-378&amp;rft.date=1907&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Jeffreys-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jeffreys_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jeffreys_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Jeffreys_58-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Jeffreys_58-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJeffreys1998" class="citation book cs1">Jeffreys, Harold (1998). <i>Theory of Probability</i>. Oxford University Press, 3rd edition. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0198503682" title="Special:BookSources/978-0198503682"><bdi>978-0198503682</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Probability&amp;rft.pub=Oxford+University+Press%2C+3rd+edition&amp;rft.date=1998&amp;rft.isbn=978-0198503682&amp;rft.aulast=Jeffreys&amp;rft.aufirst=Harold&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-BroadMind-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-BroadMind_59-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBroad1918" class="citation journal cs1 cs1-prop-long-vol">Broad, C. D. (October 1918). "On the relation between induction and probability". <i>MIND, A Quarterly Review of Psychology and Philosophy</i>. 27 (New Series) (108): 389404. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fmind%2FXXVII.4.389">10.1093/mind/XXVII.4.389</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2249035">2249035</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MIND%2C+A+Quarterly+Review+of+Psychology+and+Philosophy&amp;rft.atitle=On+the+relation+between+induction+and+probability&amp;rft.volume=27+%28New+Series%29&amp;rft.issue=108&amp;rft.pages=389-404&amp;rft.date=1918-10&amp;rft_id=info%3Adoi%2F10.1093%2Fmind%2FXXVII.4.389&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2249035%23id-name%3DJSTOR&amp;rft.aulast=Broad&amp;rft.aufirst=C.+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Perks-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Perks_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Perks_60-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Perks_60-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Perks_60-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPerks1947" class="citation journal cs1">Perks, Wilfred (January 1947). <a rel="nofollow" class="external text" href="http://www.actuaries.org.uk/research-and-resources/documents/some-observations-inverse-probability-including-new-indifference-ru">"Some observations on inverse probability including a new indifference rule"</a>. <i>Journal of the Institute of Actuaries</i>. <b>73</b> (2): 285334. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0020268100012270">10.1017/S0020268100012270</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Institute+of+Actuaries&amp;rft.atitle=Some+observations+on+inverse+probability+including+a+new+indifference+rule&amp;rft.volume=73&amp;rft.issue=2&amp;rft.pages=285-334&amp;rft.date=1947-01&amp;rft_id=info%3Adoi%2F10.1017%2FS0020268100012270&amp;rft.aulast=Perks&amp;rft.aufirst=Wilfred&amp;rft_id=http%3A%2F%2Fwww.actuaries.org.uk%2Fresearch-and-resources%2Fdocuments%2Fsome-observations-inverse-probability-including-new-indifference-ru&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-ThomasBayes-61"><span class="mw-cite-backlink">^ <a href="#cite_ref-ThomasBayes_61-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ThomasBayes_61-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBayescommunicated_by_Richard_Price1763" class="citation journal cs1">Bayes, Thomas; communicated by Richard Price (1763). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1763.0053">"An Essay towards solving a Problem in the Doctrine of Chances"</a>. <i>Philosophical Transactions of the Royal Society</i>. <b>53</b>: 370418. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1763.0053">10.1098/rstl.1763.0053</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/105741">105741</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society&amp;rft.atitle=An+Essay+towards+solving+a+Problem+in+the+Doctrine+of+Chances&amp;rft.volume=53&amp;rft.pages=370-418&amp;rft.date=1763&amp;rft_id=info%3Adoi%2F10.1098%2Frstl.1763.0053&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F105741%23id-name%3DJSTOR&amp;rft.aulast=Bayes&amp;rft.aufirst=Thomas&amp;rft.au=communicated+by+Richard+Price&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frstl.1763.0053&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFHaldane1932" class="citation journal cs1">Haldane, J.B.S. (1932). "A note on inverse probability". <i>Mathematical Proceedings of the Cambridge Philosophical Society</i>. <b>28</b> (1): 5561. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1932PCPS...28...55H">1932PCPS...28...55H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fs0305004100010495">10.1017/s0305004100010495</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122773707">122773707</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Proceedings+of+the+Cambridge+Philosophical+Society&amp;rft.atitle=A+note+on+inverse+probability&amp;rft.volume=28&amp;rft.issue=1&amp;rft.pages=55-61&amp;rft.date=1932&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122773707%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2Fs0305004100010495&amp;rft_id=info%3Abibcode%2F1932PCPS...28...55H&amp;rft.aulast=Haldane&amp;rft.aufirst=J.B.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Zellner-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-Zellner_63-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFZellner1971" class="citation book cs1">Zellner, Arnold (1971). <i>An Introduction to Bayesian Inference in Econometrics</i>. Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471169376" title="Special:BookSources/978-0471169376"><bdi>978-0471169376</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Bayesian+Inference+in+Econometrics&amp;rft.pub=Wiley-Interscience&amp;rft.date=1971&amp;rft.isbn=978-0471169376&amp;rft.aulast=Zellner&amp;rft.aufirst=Arnold&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-JeffreysPRIOR-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-JeffreysPRIOR_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJeffreys1946" class="citation journal cs1">Jeffreys, Harold (September 1946). <a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1946.0056">"An Invariant Form for the Prior Probability in Estimation Problems"</a>. <i>Proceedings of the Royal Society</i>. A 24. <b>186</b> (1007): 453461. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1946RSPSA.186..453J">1946RSPSA.186..453J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1946.0056">10.1098/rspa.1946.0056</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20998741">20998741</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society&amp;rft.atitle=An+Invariant+Form+for+the+Prior+Probability+in+Estimation+Problems&amp;rft.volume=186&amp;rft.issue=1007&amp;rft.pages=453-461&amp;rft.date=1946-09&amp;rft_id=info%3Apmid%2F20998741&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.1946.0056&amp;rft_id=info%3Abibcode%2F1946RSPSA.186..453J&amp;rft.aulast=Jeffreys&amp;rft.aufirst=Harold&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspa.1946.0056&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-BergerBernardoSun-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-BergerBernardoSun_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBergerBernardo,_JoseSun,_Dongchu2009" class="citation journal cs1">Berger, James; Bernardo, Jose; Sun, Dongchu (2009). <a rel="nofollow" class="external text" href="http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&amp;id=pdfview_1&amp;handle=euclid.aos/1236693154">"The formal definition of reference priors"</a>. <i>The Annals of Statistics</i>. <b>37</b> (2): 905938. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="cs1-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0904.0156">0904.0156</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0904.0156B">2009arXiv0904.0156B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2F07-AOS587">10.1214/07-AOS587</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3221355">3221355</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Annals+of+Statistics&amp;rft.atitle=The+formal+definition+of+reference+priors&amp;rft.volume=37&amp;rft.issue=2&amp;rft.pages=905-938&amp;rft.date=2009&amp;rft_id=info%3Aarxiv%2F0904.0156&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3221355%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1214%2F07-AOS587&amp;rft_id=info%3Abibcode%2F2009arXiv0904.0156B&amp;rft.aulast=Berger&amp;rft.aufirst=James&amp;rft.au=Bernardo%2C+Jose&amp;rft.au=Sun%2C+Dongchu&amp;rft_id=http%3A%2F%2Fprojecteuclid.org%2FDPubS%2FRepository%2F1.0%2FDisseminate%3Fview%3Dbody%26id%3Dpdfview_1%26handle%3Deuclid.aos%2F1236693154&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFClarkeAndrew_R._Barron1994" class="citation journal cs1">Clarke, Bertrand S.; Andrew R. Barron (1994). <a rel="nofollow" class="external text" href="http://www.stat.yale.edu/~arb4/publications_files/jeffery&#39;s%20prior.pdf">"Jeffreys' prior is asymptotically least favorable under entropy risk"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Statistical Planning and Inference</i>. <b>41</b>: 3760. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0378-3758%2894%2990153-8">10.1016/0378-3758(94)90153-8</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Statistical+Planning+and+Inference&amp;rft.atitle=Jeffreys%27+prior+is+asymptotically+least+favorable+under+entropy+risk&amp;rft.volume=41&amp;rft.pages=37-60&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1016%2F0378-3758%2894%2990153-8&amp;rft.aulast=Clarke&amp;rft.aufirst=Bertrand+S.&amp;rft.au=Andrew+R.+Barron&amp;rft_id=http%3A%2F%2Fwww.stat.yale.edu%2F~arb4%2Fpublications_files%2Fjeffery%27s%2520prior.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-PearsonGrammar-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-PearsonGrammar_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson1892" class="citation book cs1">Pearson, Karl (1892). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=IvdsEcFwcnsC&amp;q=grammar+of+science&amp;pg=PR19"><i>The Grammar of Science</i></a>. Walter Scott, London.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Grammar+of+Science&amp;rft.pub=Walter+Scott%2C+London&amp;rft.date=1892&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DIvdsEcFwcnsC%26q%3Dgrammar%2Bof%2Bscience%26pg%3DPR19&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-PearsnGrammar2009-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-PearsnGrammar2009_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFPearson2009" class="citation book cs1">Pearson, Karl (2009). <i>The Grammar of Science</i>. BiblioLife. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1110356119" title="Special:BookSources/978-1110356119"><bdi>978-1110356119</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Grammar+of+Science&amp;rft.pub=BiblioLife&amp;rft.date=2009&amp;rft.isbn=978-1110356119&amp;rft.aulast=Pearson&amp;rft.aufirst=Karl&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-Gelman-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gelman_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGelman2003" class="citation book cs1">Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). <i>Bayesian Data Analysis</i>. Chapman and Hall/CRC. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584883883" title="Special:BookSources/978-1584883883"><bdi>978-1584883883</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Bayesian+Data+Analysis&amp;rft.pub=Chapman+and+Hall%2FCRC&amp;rft.date=2003&amp;rft.isbn=978-1584883883&amp;rft.aulast=Gelman&amp;rft.aufirst=A.%2C+Carlin%2C+J.+B.%2C+Stern%2C+H.+S.%2C+and+Rubin%2C+D.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span>
</li>
<li id="cite_note-J01-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-J01_70-0">^</a></b></span> <span class="reference-text">A. Jøsang. A Logic for Uncertain Probabilities. <i><a href="/wiki/International_Journal_of_Uncertainty,_Fuzziness_and_Knowledge-Based_Systems" title="International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems">International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems</a>.</i> 9(3), pp.279-311, June 2001. <a rel="nofollow" class="external text" href="http://www.unik.no/people/josang/papers/Jos2001-IJUFKS.pdf">PDF</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged October 2019">permanent dead link</span></a></i>&#93;</span></sup></span>
</li>
<li id="cite_note-wavelet_oliveira-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-wavelet_oliveira_71-0">^</a></b></span> <span class="reference-text">H.M. de Oliveira and G.A.A. Araújo,. Compactly Supported One-cyclic Wavelets Derived from Beta Distributions. <i>Journal of Communication and Information Systems.</i> vol.20, n.3, pp.27-33, 2005.</span>
</li>
<li id="cite_note-Balding-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-Balding_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFBaldingNichols1995" class="citation journal cs1"><a href="/wiki/David_Balding" title="David Balding">Balding, David J.</a>; Nichols, Richard A. (1995). "A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity". <i>Genetica</i>. Springer. <b>96</b> (12): 312. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01441146">10.1007/BF01441146</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7607457">7607457</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30680826">30680826</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Genetica&amp;rft.atitle=A+method+for+quantifying+differentiation+between+populations+at+multi-allelic+loci+and+its+implications+for+investigating+identity+and+paternity&amp;rft.volume=96&amp;rft.issue=1%E2%80%932&amp;rft.pages=3-12&amp;rft.date=1995&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30680826%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F7607457&amp;rft_id=info%3Adoi%2F10.1007%2FBF01441146&amp;rft.aulast=Balding&amp;rft.aufirst=David+J.&amp;rft.au=Nichols%2C+Richard+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Keefer, Donald L. and Verdini, William A. (1993). Better Estimation of PERT Activity Time Parameters. Management Science 39(9), p. 1086&#8211;1091.</span>
</li>
<li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text">Keefer, Donald L. and Bodily, Samuel E. (1983). Three-point Approximations for Continuous Random variables. Management Science 29(5), p. 595&#8211;609.</span>
</li>
<li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nps.edu/web/drmi/">"Defense Resource Management Institute - Naval Postgraduate School"</a>. <i>www.nps.edu</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.nps.edu&amp;rft.atitle=Defense+Resource+Management+Institute+-+Naval+Postgraduate+School&amp;rft_id=https%3A%2F%2Fwww.nps.edu%2Fweb%2Fdrmi%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">van der Waerden, B. L., "Mathematical Statistics", Springer, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-04507-6" title="Special:BookSources/978-3-540-04507-6">978-3-540-04507-6</a>.</span>
</li>
<li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">On normalizing the incomplete beta-function for fitting to dose-response curves M.E. Wise Biometrika vol 47, No. 1/2, June 1960, pp. 173-175</span>
</li>
<li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFYuleFilon1936" class="citation journal cs1"><a href="/wiki/Udny_Yule" title="Udny Yule">Yule, G. U.</a>; Filon, L. N. G. (1936). <a href="/wiki/Karl_Pearson" title="Karl Pearson">"Karl Pearson. 1857-1936"</a>. <i><a href="/wiki/Obituary_Notices_of_Fellows_of_the_Royal_Society" class="mw-redirect" title="Obituary Notices of Fellows of the Royal Society">Obituary Notices of Fellows of the Royal Society</a></i>. <b>2</b> (5): 72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frsbm.1936.0007">10.1098/rsbm.1936.0007</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/769130">769130</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Obituary+Notices+of+Fellows+of+the+Royal+Society&amp;rft.atitle=Karl+Pearson.+1857-1936&amp;rft.volume=2&amp;rft.issue=5&amp;rft.pages=72&amp;rft.date=1936&amp;rft_id=info%3Adoi%2F10.1098%2Frsbm.1936.0007&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F769130%23id-name%3DJSTOR&amp;rft.aulast=Yule&amp;rft.aufirst=G.+U.&amp;rft.au=Filon%2C+L.+N.+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-rscat-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-rscat_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20111025030931/http://www2.royalsociety.org/DServe/dserve.exe?dsqIni=Dserve.ini&amp;dsqApp=Archive&amp;dsqCmd=Show.tcl&amp;dsqDb=Persons&amp;dsqPos=0&amp;dsqSearch=%28%28text%29%3D%27%20%20Pearson%3A%20Karl%20%281857%20-%201936%29%20%20%27%29)">"Library and Archive catalogue"</a>. <i>Sackler Digital Archive</i>. Royal Society. Archived from <a rel="nofollow" class="external text" href="http://www2.royalsociety.org/DServe/dserve.exe?dsqIni=Dserve.ini&amp;dsqApp=Archive&amp;dsqCmd=Show.tcl&amp;dsqDb=Persons&amp;dsqPos=0&amp;dsqSearch=%28%28text%29%3D%27%20%20Pearson%3A%20Karl%20%281857%20-%201936%29%20%20%27%29%29">the original</a> on 2011-10-25<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-07-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Sackler+Digital+Archive&amp;rft.atitle=Library+and+Archive+catalogue&amp;rft_id=http%3A%2F%2Fwww2.royalsociety.org%2FDServe%2Fdserve.exe%3FdsqIni%3DDserve.ini%26dsqApp%3DArchive%26dsqCmd%3DShow.tcl%26dsqDb%3DPersons%26dsqPos%3D0%26dsqSearch%3D%2528%2528text%2529%253D%2527%2520%2520Pearson%253A%2520Karl%2520%25281857%2520-%25201936%2529%2520%2520%2527%2529%2529&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-David_History-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-David_History_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFDavid2001" class="citation book cs1">David, H. A. and A.W.F. Edwards (2001). <i>Annotated Readings in the History of Statistics</i>. Springer; 1 edition. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0387988443" title="Special:BookSources/978-0387988443"><bdi>978-0387988443</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Annotated+Readings+in+the+History+of+Statistics&amp;rft.pub=Springer%3B+1+edition&amp;rft.date=2001&amp;rft.isbn=978-0387988443&amp;rft.aulast=David&amp;rft.aufirst=H.+A.+and+A.W.F.+Edwards&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFGini1911" class="citation journal cs1 cs1-prop-long-vol">Gini, Corrado (1911). "Considerazioni Sulle Probabilità Posteriori e Applicazioni al Rapporto dei Sessi Nelle Nascite Umane". <i>Studi Economico-Giuridici della Università de Cagliari</i>. Anno III (reproduced in Metron 15, 133, 171, 1949): 541.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studi+Economico-Giuridici+della+Universit%C3%A0+de+Cagliari&amp;rft.atitle=Considerazioni+Sulle+Probabilit%C3%A0+Posteriori+e+Applicazioni+al+Rapporto+dei+Sessi+Nelle+Nascite+Umane&amp;rft.volume=Anno+III&amp;rft.issue=reproduced+in+Metron+15%2C+133%2C+171%2C+1949&amp;rft.pages=5-41&amp;rft.date=1911&amp;rft.aulast=Gini&amp;rft.aufirst=Corrado&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFJohnson1997" class="citation book cs1">Johnson, Norman L. and Samuel Kotz, ed. (1997). <i>Leading Personalities in Statistical Sciences: From the Seventeenth Century to the Present (Wiley Series in Probability and Statistics</i>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471163817" title="Special:BookSources/978-0471163817"><bdi>978-0471163817</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Leading+Personalities+in+Statistical+Sciences%3A+From+the+Seventeenth+Century+to+the+Present+%28Wiley+Series+in+Probability+and+Statistics&amp;rft.pub=Wiley&amp;rft.date=1997&amp;rft.isbn=978-0471163817&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
<li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFMetron_journal." class="citation web cs1">Metron journal. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120716202225/http://www.metronjournal.it/storia/ginibio.htm">"Biography of Corrado Gini"</a>. Metron Journal. Archived from <a rel="nofollow" class="external text" href="http://www.metronjournal.it/storia/ginibio.htm">the original</a> on 2012-07-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-08-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Biography+of+Corrado+Gini&amp;rft.pub=Metron+Journal&amp;rft.au=Metron+journal.&amp;rft_id=http%3A%2F%2Fwww.metronjournal.it%2Fstoria%2Fginibio.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span>
</li>
</ol></div></div>
<h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Beta_distribution&amp;action=edit&amp;section=76" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1134653256">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style>
<div class="side-box-flex">
<div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div>
<div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Beta_distribution" class="extiw" title="commons:Category:Beta distribution">Beta distribution</a></span>.</div></div>
</div>
<ul><li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/BetaDistribution/">"Beta Distribution"</a> by Fiona Maclachlan, the <a href="/wiki/Wolfram_Demonstrations_Project" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a>, 2007.</li>
<li><a rel="nofollow" class="external text" href="http://www.xycoon.com/beta.htm">Beta Distribution&#160;&#8211; Overview and Example</a>, xycoon.com</li>
<li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120829140915/http://www.brighton-webs.co.uk/distributions/beta.htm">Beta Distribution</a>, brighton-webs.co.uk</li>
<li><a rel="nofollow" class="external text" href="http://www.exstrom.com/blog/snark/posts/dancingbeta.html">Beta Distribution Video</a>, exstrom.com</li>
<li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Beta-distribution">"Beta-distribution"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Beta-distribution&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DBeta-distribution&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></li>
<li><span class="citation mathworld" id="Reference-Mathworld-Beta_Distribution"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1133582631"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/BetaDistribution.html">"Beta Distribution"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Beta+Distribution&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FBetaDistribution.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABeta+distribution" class="Z3988"></span></span></li>
<li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=UZjlBQbV1KU">Harvard University Statistics 110 Lecture 23 Beta Distribution, Prof. Joe Blitzstein</a></li></ul>
<div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-pa
<ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li>
<li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li>
<li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">beta-binomial</a></li>
<li><a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial</a></li>
<li><a href="/wiki/Categorical_distribution" title="Categorical distribution">categorical</a></li>
<li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">hypergeometric</a>
<ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">negative</a></li></ul></li>
<li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li>
<li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li>
<li><a href="/wiki/Soliton_distribution" title="Soliton distribution">soliton</a></li>
<li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">discrete uniform</a></li>
<li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li>
<li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="ZipfMandelbrot law">ZipfMandelbrot</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">beta negative binomial</a></li>
<li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li>
<li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="ConwayMaxwellPoisson distribution">ConwayMaxwellPoisson</a></li>
<li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">discrete phase-type</a></li>
<li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li>
<li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">extended negative binomial</a></li>
<li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="FlorySchulz distribution">FlorySchulz</a></li>
<li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="GaussKuzmin distribution">GaussKuzmin</a></li>
<li><a href="/wiki/Geometric_distribution" title="Geometric distribution">geometric</a></li>
<li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">logarithmic</a></li>
<li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">mixed Poisson</a></li>
<li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">negative binomial</a></li>
<li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li>
<li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">parabolic fractal</a></li>
<li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li>
<li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li>
<li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="YuleSimon distribution">YuleSimon</a></li>
<li><a href="/wiki/Zeta_distribution" title="Zeta distribution">zeta</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">arcsine</a></li>
<li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li>
<li><a href="/wiki/Balding%E2%80%93Nichols_model" title="BaldingNichols model">BaldingNichols</a></li>
<li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li>
<li><a class="mw-selflink selflink">beta</a></li>
<li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">beta rectangular</a></li>
<li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">continuous Bernoulli</a></li>
<li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="IrwinHall distribution">IrwinHall</a></li>
<li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li>
<li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">logit-normal</a></li>
<li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">noncentral beta</a></li>
<li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li>
<li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">raised cosine</a></li>
<li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">reciprocal</a></li>
<li><a href="/wiki/Triangular_distribution" title="Triangular distribution">triangular</a></li>
<li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li>
<li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">uniform</a></li>
<li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li>
<li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li>
<li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li>
<li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">beta prime</a></li>
<li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li>
<li><a href="/wiki/Chi_distribution" title="Chi distribution">chi</a></li>
<li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared</a>
<ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">noncentral</a></li>
<li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">inverse</a>
<ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">scaled</a></li></ul></li></ul></li>
<li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li>
<li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li>
<li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a>
<ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">hyper</a></li></ul></li>
<li><a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential</a>
<ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">hyperexponential</a></li>
<li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">hypoexponential</a></li>
<li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">logarithmic</a></li></ul></li>
<li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a>
<ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">noncentral</a></li></ul></li>
<li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">folded normal</a></li>
<li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li>
<li><a href="/wiki/Gamma_distribution" title="Gamma distribution">gamma</a>
<ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">generalized</a></li>
<li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">inverse</a></li></ul></li>
<li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li>
<li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a>
<ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">shifted</a></li></ul></li>
<li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">half-logistic</a></li>
<li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">half-normal</a></li>
<li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li>
<li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">inverse Gaussian</a>
<ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">generalized</a></li></ul></li>
<li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="KolmogorovSmirnov test">Kolmogorov</a></li>
<li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li>
<li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">log-Cauchy</a></li>
<li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">log-Laplace</a></li>
<li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">log-logistic</a></li>
<li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">log-normal</a></li>
<li><a href="/wiki/Log-t_distribution" title="Log-t distribution">log-t</a></li>
<li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li>
<li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">matrix-exponential</a></li>
<li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="MaxwellBoltzmann distribution">MaxwellBoltzmann</a></li>
<li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="MaxwellJüttner distribution">MaxwellJüttner</a></li>
<li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li>
<li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li>
<li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li>
<li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">phase-type</a></li>
<li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li>
<li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li>
<li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic BreitWigner distribution">relativistic BreitWigner</a></li>
<li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li>
<li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">truncated normal</a></li>
<li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li>
<li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a>
<ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">discrete</a></li></ul></li>
<li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li>
<li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">exponential power</a></li>
<li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li>
<li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li>
<li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li>
<li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">generalized normal</a></li>
<li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">generalized hyperbolic</a></li>
<li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">geometric stable</a></li>
<li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li>
<li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li>
<li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">hyperbolic secant</a></li>
<li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li>
<li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li>
<li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a>
<ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">asymmetric</a></li></ul></li>
<li><a href="/wiki/Logistic_distribution" title="Logistic distribution">logistic</a></li>
<li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">noncentral <i>t</i></a></li>
<li><a href="/wiki/Normal_distribution" title="Normal distribution">normal (Gaussian)</a></li>
<li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">normal-inverse Gaussian</a></li>
<li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">skew normal</a></li>
<li><a href="/wiki/Slash_distribution" title="Slash distribution">slash</a></li>
<li><a href="/wiki/Stable_distribution" title="Stable distribution">stable</a></li>
<li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li>
<li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="TracyWidom distribution">TracyWidom</a></li>
<li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">variance-gamma</a></li>
<li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">generalized chi-squared</a></li>
<li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">generalized extreme value</a></li>
<li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">generalized Pareto</a></li>
<li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="MarchenkoPastur distribution">MarchenkoPastur</a></li>
<li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li>
<li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li>
<li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li>
<li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li>
<li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li>
<li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li>
<li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li>
<li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li>
<li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">shifted log-logistic</a></li>
<li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><span class="nobold"><i>Discrete: </i></span></li>
<li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li>
<li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">multinomial</a>
<ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li>
<li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">negative</a></li></ul></li>
<li><span class="nobold"><i>Continuous: </i></span></li>
<li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a>
<ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">generalized</a></li></ul></li>
<li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">multivariate Laplace</a></li>
<li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate normal</a></li>
<li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">multivariate stable</a></li>
<li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">multivariate <i>t</i></a></li>
<li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">normal-gamma</a>
<ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">inverse</a></li></ul></li>
<li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li>
<li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li>
<li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">matrix normal</a></li>
<li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">matrix <i>t</i></a></li>
<li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">matrix gamma</a>
<ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">inverse</a></li></ul></li>
<li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a>
<ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">normal</a></li>
<li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">inverse</a></li>
<li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">normal-inverse</a></li>
<li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">complex</a></li></ul></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt>
<dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd>
<dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">univariate von Mises</a></dd>
<dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">wrapped normal</a></dd>
<dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">wrapped Cauchy</a></dd>
<dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">wrapped exponential</a></dd>
<dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">wrapped asymmetric Laplace</a></dd>
<dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">wrapped Lévy</a></dd>
<dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt>
<dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd>
<dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt>
<dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">bivariate von Mises</a></dd>
<dt><span class="nobold"><i>Multivariate</i></span></dt>
<dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von MisesFisher distribution">von MisesFisher</a></dd>
<dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<dl><dt><span class="nobold"><i>Degenerate</i></span></dt>
<dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd>
<dt><span class="nobold"><i>Singular</i></span></dt>
<dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li>
<li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">compound Poisson</a></li>
<li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">elliptical</a></li>
<li><a href="/wiki/Exponential_family" title="Exponential family">exponential</a></li>
<li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">natural exponential</a></li>
<li><a href="/wiki/Location%E2%80%93scale_family" title="Locationscale family">locationscale</a></li>
<li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">maximum entropy</a></li>
<li><a href="/wiki/Mixture_distribution" title="Mixture distribution">mixture</a></li>
<li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li>
<li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li>
<li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">wrapped</a></li></ul>
</div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div>
<ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li>
<li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul>
</div></td></tr></tbody></table></div>
<!--
NewPP limit report
Parsed by mw1370
Cached time: 20231203124612
Cache expiry: 1814400
Reduced expiry: false
Complications: [varyrevisionsha1, showtoc]
CPU time usage: 1.991 seconds
Real time usage: 2.682 seconds
Preprocessor visited node count: 9986/1000000
Postexpand include size: 231164/2097152 bytes
Template argument size: 8053/2097152 bytes
Highest expansion depth: 17/100
Expensive parser function count: 14/500
Unstrip recursion depth: 1/20
Unstrip postexpand size: 271426/5000000 bytes
Lua time usage: 0.655/10.000 seconds
Lua memory usage: 8661237/52428800 bytes
Number of Wikibase entities loaded: 0/400
-->
<!--
Transclusion expansion time report (%,ms,calls,template)
100.00% 1101.125 1 -total
52.82% 581.638 1 Template:Reflist
26.50% 291.824 37 Template:Cite_book
12.99% 142.997 27 Template:Cite_journal
8.92% 98.240 4 Template:Navbox
8.67% 95.438 1 Template:ProbDistributions
6.48% 71.308 1 Template:Short_description
4.38% 48.233 2 Template:Citation_needed
4.09% 44.983 1 Template:Probability_distribution
3.96% 43.626 3 Template:Fix
-->
<!-- Saved in parser cache with key enwiki:pcache:idhash:207074-0!canonical and timestamp 20231203124610 and revision id 1187935768. Rendering was triggered because: page-view
-->
</div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript>
<div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Beta_distribution&amp;oldid=1187935768">https://en.wikipedia.org/w/index.php?title=Beta_distribution&amp;oldid=1187935768</a>"</div></div>
<div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Factorial_and_binomial_topics" title="Category:Factorial and binomial topics">Factorial and binomial topics</a></li><li><a href="/wiki/Category:Conjugate_prior_distributions" title="Category:Conjugate prior distributions">Conjugate prior distributions</a></li><li><a href="/wiki/Category:Exponential_family_distributions" title="Category:Exponential family distributions">Exponential family distributions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:CS1_errors:_missing_periodical" title="Category:CS1 errors: missing periodical">CS1 errors: missing periodical</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_October_2019" title="Category:Articles with dead external links from October 2019">Articles with dead external links from October 2019</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2013" title="Category:Articles with unsourced statements from February 2013">Articles with unsourced statements from February 2013</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div>
</div>
</main>
</div>
<div class="mw-footer-container">
<footer id="footer" class="mw-footer" role="contentinfo" >
<ul id="footer-info">
<li id="footer-info-lastmod"> This page was last edited on 2 December 2023, at 11:01<span class="anonymous-show">&#160;(UTC)</span>.</li>
<li id="footer-info-copyright">Text is available under the <a rel="license" href="//en.wikipedia.org/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License">Creative Commons Attribution-ShareAlike License 4.0</a><a rel="license" href="//en.wikipedia.org/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" style="display:none;"></a>;
additional terms may apply. By using this site, you agree to the <a href="//foundation.wikimedia.org/wiki/Terms_of_Use">Terms of Use</a> and <a href="//foundation.wikimedia.org/wiki/Privacy_policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a href="//www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li>
</ul>
<ul id="footer-places">
<li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li>
<li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li>
<li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li>
<li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li>
<li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li>
<li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li>
<li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li>
<li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li>
<li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Beta_distribution&amp;lang=en&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li>
</ul>
<ul id="footer-icons" class="noprint">
<li id="footer-copyrightico"><a href="https://wikimediafoundation.org/"><img src="/static/images/footer/wikimedia-button.png" srcset="/static/images/footer/wikimedia-button-1.5x.png 1.5x, /static/images/footer/wikimedia-button-2x.png 2x" width="88" height="31" alt="Wikimedia Foundation" loading="lazy" /></a></li>
<li id="footer-poweredbyico"><a href="https://www.mediawiki.org/"><img src="/static/images/footer/poweredby_mediawiki_88x31.png" alt="Powered by MediaWiki" srcset="/static/images/footer/poweredby_mediawiki_132x47.png 1.5x, /static/images/footer/poweredby_mediawiki_176x62.png 2x" width="88" height="31" loading="lazy"></a></li>
</ul>
</footer>
</div>
</div>
</div>
<div class="vector-settings" id="p-dock-bottom">
<ul>
<li>
<button class="cdx-button cdx-button--icon-only vector-limited-width-toggle" id=""><span class="vector-icon mw-ui-icon-fullScreen mw-ui-icon-wikimedia-fullScreen"></span>
<span>Toggle limited content width</span>
</button>
</li>
</ul>
</div>
<script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw1405","wgBackendResponseTime":149,"wgPageParseReport":{"limitreport":{"cputime":"1.991","walltime":"2.682","ppvisitednodes":{"value":9986,"limit":1000000},"postexpandincludesize":{"value":231164,"limit":2097152},"templateargumentsize":{"value":8053,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":271426,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1101.125 1 -total"," 52.82% 581.638 1 Template:Reflist"," 26.50% 291.824 37 Template:Cite_book"," 12.99% 142.997 27 Template:Cite_journal"," 8.92% 98.240 4 Template:Navbox"," 8.67% 95.438 1 Template:ProbDistributions"," 6.48% 71.308 1 Template:Short_description"," 4.38% 48.233 2 Template:Citation_needed"," 4.09% 44.983 1 Template:Probability_distribution"," 3.96% 43.626 3 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.655","limit":"10.000"},"limitreport-memusage":{"value":8661237,"limit":52428800}},"cachereport":{"origin":"mw1370","timestamp":"20231203124612","ttl":1814400,"transientcontent":false}}});});</script>
<script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Beta distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Beta_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q756254","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q756254","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-04-07T21:06:30Z","dateModified":"2023-12-02T11:01:31Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/f3\/Beta_distribution_pdf.svg","headline":"probability distribution"}</script>
</body>
</html>