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1 Proofs of some properties of the logarithm

Let the natural logarithm be defined as:

ln(x) :=

x∫
1

1

z
dz (1)

Property 1. ln(x · y) = ln(x) + ln(y)

Proof. Consider f(x) and g(x):

fx(y) =

x·y∫
1

1

z
dz = ln(x · y) (2)

gx(y) =

x∫
1

1

z
dz +

y∫
1

1

z
dz = ln(x) + ln(y) (3)

differentiating both with respect to y, we get that:

f ′x(y) =
1

xy
· (x · y)′ =

1

y
(4)

g′x(y) = 0 +
1

y
· (y)′ =

1

y
(5)

thus,
∀x g′x(y) = f ′x(y) (6)

additionally,
∀x fx(1) = gx(1) = ln(x) (7)

From this we can conclude, by integration, that fx(y) = gx(y), which completes our proof.

We will use again and again the trick of differentiating and checking equality for one value
to prove that two functions are the same. We leave it as an exercise to the reader to check
whether this is legal, i.e., whether we comply with the hypothesis of the Picard-Lindelöf theorem
or similar.
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Property 2. ln(xn) = n · ln(x)

Proof. Again, consider f(x) and g(x):

fn(x) =

xn∫
1

1

z
dz = ln(xn) (8)

gn(x) = n ·

x∫
1

1

z
dz = n · ln(x) (9)

For clarity, let F (x) be a primitive of 1
x
, so that:

fn(x) = F (xn)− F (1) (10)

gn(x) = n · (F (x)− F (1)) (11)

differentiating both with respect to x, we get that:

f ′n(x) = F ′(xn) · (xn)′ − 0 = F ′(xn) · n · xn−1 =
1

xn
· n · xn−1 =

n

x
(12)

g′n(x) = n · (F ′(x)− 0) =
n

x
(13)

Again, ∀n f ′n(x) = g′n(x) = n
x
∧ fn(1) = gn(1) =⇒ fn(x) = gn(x)

2 The exponential function as the inverse of the loga-

rithm

Let exp(x) be the inverse of the logarithm function, that is:

exp(ln(x)) = x (14)

Note that the inverse exists because the logarithm is a strictly increasing function.

Property 3. exp(0) = 1, and the exponential is it’s own derivative: exp′(x) = exp(x).

Proof. For the first part, exp(ln(1)) = 1 =⇒ exp(0) = 1. For the second part, write the
exponential as:

exp


x∫
1

1

z
dz

 = x (15)

differentiating the above expression with respect to x:

exp′


x∫
1

1

z
dz

 ·


x∫
1

1

z
dz


′

= exp′


x∫
1

1

z
dz

 · 1

x
= 1 (16)



Notice that (x)′ = 1. Multiplying by x 6= 0:

exp′


x∫
1

1

z
dz

 = x (17)

Note that log(0) is not well defined as an integral, and thus we have no need of an inverse at
x = 0. At any point, because of the uniqueness of the inverse, and writting y = ln(x), we
conclude that exp′(y) = exp(y). Note that y = ln(x), and that the image of the logarithm
comprises all real numbers.

From now on, we would feel justified in using the Taylor expansion of exp(x).

Property 4. e := limn→∞
(
1 + 1

n

)n
=⇒ ex = limn→∞

(
1 + x

n

)n
Proof. For a fixed value of x,

lim
n→∞

(
1 +

x

n

)n
= lim

k=n
x
→∞

(
1 +

1

k

)k·x

=

(
lim
k→∞

(
1 +

1

k

)k
)x

= ex (18)

Note the happy coincidence that e0 = limn→∞
(
1 + 0

n

)n
= 1 = exp(0). Note also that this

step simplifies our proof immensely, because working with ex as

lim p
q
→x

q
√
ep (19)

would have been torturous.

Property 5. The limit limn→∞
(
1 + 1

n

)n
is bounded and defines the unique value e such that

ln(e) = 1 ⇐⇒ e = exp(1)

Proof. Let us take the logarithm of e:

ln(e) = ln

(
lim
n→∞

(
1 +

1

n

)n)
(20)

We can place the logarithm inside the limit and take out the exponent n as a multiplier:

ln(e) = lim
n→∞

ln

((
1 +

1

n

)n)
= lim

n→∞
n · ln

(
1 +

1

n

)
(21)

ln(e) = lim
n→∞

ln
(
1 + 1

n

)
1/n

(22)

Now, because of L’Hopital’s rule, we know that:

lim
t→0

ln(1 + t)

t
= 1 (23)

As a brief remainder, replace the ln(t + 1) by its Taylor expansion, and note that the higher
power terms leave 0s. Thus, defining t = 1/n, we have:

ln(e) = lim
t→0

ln (1 + t)

t
= 1 ⇐⇒ e = exp(1) (24)

It’s left as an exercise to the reader to prove that the Taylor expansion of exp(x) is bounded
for all x, and in particular for x = 1.



Property 6. ex = exp(x)

Proof. 1 Much like above, let us take the logarithm of ex, for a fixed x:

ln(ex) = ln
(

lim
n→∞

(
1 +

x

n

)n)
(25)

We can place the logarithm inside the limit and then take the exponent n out:

ln(ex) = lim
n→∞

ln
((

1 +
x

n

)n)
(26)

ln(ex) = lim
n→∞

n · ln
(

1 +
x

n

)
(27)

We multiply and divide by x
n

ln(ex) = lim
n→∞

x ·
ln
(
1 + x

n

)
x/n

(28)

We define t = x/n, so as n→∞, t→ 0, and apply L’Hopital’s rule.

ln(ex) = x · lim
t→0

ln (1 + t)

t
= x (29)

Thus, ex is the inverse of ln(x), and because of the uniqueness of the inverse,

ex = exp(x) (30)

1The proof idea is taken from https://proofwiki.org/wiki/Exponential_as_Limit_of_Sequence
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