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1 Introduction

Social movements such as “Effective Altruism” face the problem of optimal
allocation of resources across time in order to maximize their desired impact.
Much like states and other entities considered in the literature since (Ramsey,
1928) [1], they have the option to invest in order to give more later. However,
unlike states, where population dynamics are usually considered exogenous,
such agents also have the option of recruiting like-minded associates through
movement building. For example, Bill Gates can recruit other ultra-rich
people through the Giving Pledge, aspiring effective altruists can likewise
spread their ideas, etc.

This paper models the optimal allocation of capital for a social move-
ment between direct spending, investment, and movement building, as well
as the optimal allocation of labor between direct workers, money earners,
and movement builders. This research direction follows in the footsteps of
(Trammell, 2020) [2], which considers a different facet of a related problem:
the dynamics for a philanthropic funder who aims to provide public goods
while having a lower discount rate than less patient partners.

The outline of this paper is as follows: §?? presents the mathematical
toolset and nomenclature used to find solutions for the optimal path prob-
lems, namely the Hamiltonian.
§2 considers a social movement which starts out with a certain amount

of money and a certain number of movement participants. This movement
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must then decide where to allocate their capital and labor. We work out some
useful properties of the optimal solution, as well as its long-term balanced
growth rates.
§3 outlines some results which allow for the numerical simulation of the

evolution of the model starting from some initial conditions, and provides
some analysis and graphical results. §4 outlines implications and conclusions.
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2 Movement building model

2.1 Setup

The variables under consideration are:

1. x1, total capital, and x2, total movement size (labor). r1, the return
rate on capital, and r2, which will typically be negative and represent
a decay rate, due to death, value drift, etc.

2. α1, spending on direct work on a given instant, and α2, the money
spent on movement building on a given instant.

3. σ1, σ2, σ2: the fraction of labor which works respectively on direct work,
movement building, and money-making. σ1 + σ2 + σ3 = 1, so well
substitute σ3 = 1− σ1 − σ2 throughout.

4. w2 · exp{γ1t}: wages rising with economic growth, and β2 · exp{γ2t}:
the changing difficulty of recruiting movement participants. γ2 might
be hypothesized to be negative, given that economic growth provides
better outside options, but empirically seems to be positive. For sim-
plicity, we will consider these rates —γ1 and γ2— to be exogenous.

5. δ2: movement building returns to scale

We are maximizing:

V ( ~α(t)) = max
~α(t)

∫ ∞
0

e−ρt · U( ~x(t), ~α(t))dt (1)

For utility and laws of motion:

U(x, α) =
(αλ11 (σ1x2)

1−λ1)1−η

1− η
(2)

ẋ =

[
ẋ1
ẋ2

]
=

[
r1x1 − α1 − α2 + x2 · w2 · exp{γ1t} · (1− σ1 − σ2)

r2x2 + β2 · exp{γ2t} · (αλ22 · (σ2x2)1−λ2)δ2

]
(3)

under the constraints that

x2 ≥ 0 ∧ αi ≥ 0 ∧ σ1 + σ2 ≤ 1 (4)
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With the Hamiltonian standing at:

H = U + µ1 · ẋ1 + µ2 · ẋ2 (5)

H =
(αλ11 (σ1x2)

1−λ1)1−η

1− η
+ µ1 · (r1x1 − α1 − α2 + x2 · w2 · exp{γ1t} · (1− σ1 − σ2))
+ µ2 · (r2x2 + β2 · exp{γ2t} · (αλ22 · (σ2x2)1−λ2)δ2)

(6)

and the transversality condition being:

lim
t→∞

exp{−ρ · t} · xi · µi = 0 (7)

For convenience, F2 := β2 · (αλ22 · (σ2x2)1−λ2)δ2 . Note that F2 = ẋ2 − r2x2

2.2 Variable ratios heuristic

Theorem 1. Let the model described in (2.1) hold. Then, in the optimal
path,

(1− λ1)
λ1

· α1

σ1
=

(1− λ2)
λ2

· α2

σ2
(8)

We will provide two proofs, one using the derivation from an analysis of
the Hamiltonian equations in §B, and another which considers the marginal
values of these variables.

Proof (from analysis of the Hamiltonian equations in §B). By dividing (72)
by (74) and (73) by (75), we conclude that:

λ1
α1

=
1− λ1

σ1 · x2 · w2 · exp{γ1t}
(9)

λ2
α2

=
1− λ2

σ2 · x2 · w2 · exp{γ1t}
(10)

and hence

(1− λ1)
λ1

· α1

σ1
=

(1− λ2)
λ2

· α2

σ2
(11)

4



We can also derive this result from the Euler equations, that is, just from
the constraint that on the optimal path, the marginal value of moving labor
and spending around should be equal to 0.

Proof (using the Euler equations).

∂U

∂$
=

∂U

∂labor
· ∂labor

∂$ bought out of money-making
(12)

∂people

∂$ through movement building
=
∂labor

∂labor
· ∂labor

∂$ bought out of money-making
(13)

Equation (12) reads as “the marginal money-maker should produce as
much value by making money and directly donating their earnings as by
working directly.” Equation (12) reads as “the marginal money-maker should
create as many movement participants by making money and donating their
earnings to movement building as by working on movement building them-
selves.” Otherwise, we could move direct workers or movement builders to-
wards money-making, or vice-versa.

From (3) and (5), the model definition, these two equations develop into:

λ1 · (1− η) · U
α1

=

(
(1− λ1) · (1− η) · U

σ1 · x2

)
·
(

1

w2 · exp{γ1 · t}

)
(14)

λ2 · δ2 ·
F2

α2

=

(
(1− λ2) · δ2 ·

F2

σ2 · x2

)
·
(

1

w2 · exp{γ1 · t}

)
(15)

Which simplify into

λ1
α1

=
1− λ1

σ1 · x2 · w2 · exp{γ1t}
(16)

λ2
α2

=
1− λ2

σ2 · x2 · w2 · exp{γ1t}
(17)

i.e., (9) and (10), from which (8) follows by isolation of the x2·w2·exp{γ1t}
term:

(1− λ1)
λ1

· α1

σ1
=

(1− λ2)
λ2

· α2

σ2
(18)
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We can understand this equation as a convenient necessary but not suffi-
cient heuristic, such that a spending schedule which doesn’t satisfy it suffers
from the affliction that, insofar as the model under consideration is accu-
rate enough, one would be able to obtain a better outcome by redistributing
people and funds around.

This heuristic can also be expressed in even simpler terms by abstracting
the λi away:

α1

σ1
· = constant · α2

σ2
(19)

respectively
α1

σ1 · x2
· = constant · α2

σ2 · x2
(20)

2.3 Results

2.3.1 Balanced growth rates

The balanced growth rates for our variables are derived in §§B.1 through
B.4. They are :

gx2 =
γ2 + δ2λ2γ1

1− δ2
(21)

gα2 = gx2 + γ1 =

[
γ2 + δ2λ2γ1

1− δ2

]
+ γ1 (22)

gσ2 = 0 (23)

gα1 =
r1 − ρ
η
− (1− η)(1− λ1)

η
· γ1 (24)

gσ1 =
r − ρ
η
−
(

(1− η)(1− λ1)
η

+ 1

)
· γ1 − gx2 (25)

subject to the transversality conditions:
gα1 < r1

gα2 < r1

r2 + γ1 < r1

(26)
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2.3.2 Asymptotic Quasi-Ponzi

Theorem 2. Let the model described in (2.1) hold. Then, in the optimal
path, in almost all cases:

σ1
σ1 + σ2

→ 0 (27)

α1

α1 + α2

→ 0 (28)

Proof. Recall (8):

(1− λ1)
λ1

· α1

σ1
=

(1− λ2)
λ2

· α2

σ2
(29)

Per results on the previous section, (2.3.1), gσ2 = 0. Further, we know
that gσ1 ≤ 0; it can’t be the case that gσ1 > 0 because then σ1, the fraction of
movement building allocated to direct work would eventually exceed 100%.

In particular, gσ1 < 0 unless we’re on the knife edge case where

r − ρ
η
−
(

(1− η)(1− λ1)
η

+ 1

)
· γ1 =

γ2 + δ2λ2γ1
1− δ2

(30)

So, unless σ1 is on that knife edge case, σ1 → 0 and because σ2 converges
to a nonzero constant in almost all cases:

σ1
σ1 + σ2

→ 0 (31)

Per (8), gα2 −��gσ2 = gα1 − gσ1 , and because gσ1 < 0 in almost all cases,
gα2 > gα1 . Because α2 then grows faster than α2, this directly implies:

α1

α1 + α2

→ 0 (32)

This is reminiscent of a Ponzi scheme or of a multi-level-marketing scheme,
because in the limit, most participants don’t do direct-work either. In section
§3 we will notice that this behavior may hold in the limit, but doesn’t hold
in the near-term.
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2.3.3 Exact spending schedules

Theorem 3. Let the model described in (2.1) hold. Then, in the optimal
path,

αη1 =
λ1

k1 · exp{(ρ− r1)t}
·
(

1− λ1
λ1 · w2 · exp{γ1t}

)(1−λ1)(1−η)

(33)

α1−δ2
2 =

w2 · exp{γ1 · t}
r1 − γ1 − r2

· δ2 · λ2 · β2 · exp{γ2t} ·
(

1− λ2
λ2 · w2 · exp{γ1t}

·
)δ2·(1−λ2)

(34)
where k1 is minimized subject to the constraint that lim

t→∞
x1 ≥ 0

Proof. See §B.5

One conclusion is that the value drift rate, (as long as it’s low enough and
satisfies r2 + γ1 < r1, per (26), doesn’t change the growth rate of spending
on movement building, but affects it as a one time multiplicative ratio.

2.4 Example values

2.4.1 Example 1. η = 1.1, γ1 = 0.03, δ2 = 0.44

η = Elasticy of spending = 1.1

ρ = Hazard rate = 0.005 = 0.5%

r1 = Returns above inflation = 0.06 = 6%

γ1 = Change in participant contributions = 0.03 = 3%

γ2 = Change in the difficulty of recruiting = 0.01 = 1%

w2 = Average participant contribution per unit of time = 0.5

β2 = Constant inversely proportional to difficulty of recruiting = 1, 000

λ1 = Coub-Douglas elasticity of direct work and direct spending = 0.5

λ2 = Coub-Douglas elasticity of movement building = 0.5

δ2 = Elasticity of movement growth = 0.44

(35)
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gx2 =
γ2 + δ2λ2γ1

1− δ2
=

0.01 + 0.5 · 0.44 · 0.03

1− 0.44

= 0.0296 = 2.96%

(36)

gα2 = gσ2 + gx2 + γ1 = 0 + gx2 + γ1

= 0.0296 + 0.03

= 0.0596 = 5.96%

(37)

gα1 =
r1 − ρ
η
− (1− η)(1− λ1)

η
· γ1

=
0.06− 0.005

1.1
− (1− 1.1)(1− 0.5)

1.1
· 0.03

≈ 0.05136 = 5.136%

(38)

gσ1 = gα1 − gx2 − γ1
= 0.05136− 0.0296− 0.03

= −0.00824 = −0.824%

(39)

2.4.2 Example 2. η = 0.9, γ1 = 0.03, δ2 = 0.44

η = Elasticy of spending = 0.9

ρ = Hazard rate = 0.005 = 0.5%

r1 = Returns above inflation = 0.06 = 6%

γ1 = Change in participant contributions = 0.03 = 3%

γ2 = Change in the difficulty of recruiting = 0.01 = 1%

w2 = Average participant contribution per unit of time = 0.5

β2 = Constant inversely proportional to difficulty of recruiting = 1, 000

λ1 = Coub-Douglas elasticity of direct work and direct spending = 0.5

λ2 = Coub-Douglas elasticity of movement building = 0.5

δ2 = Elasticity of movement growth = 0.44

(40)

9



gx2 =
γ2 + δ2λ2γ1

1− δ2
=

0.01 + 0.5 · 0.44 · 0.03

1− 0.44

= 0.0296 = 2.96%

(41)

gα2 = gσ2 + gx2 + γ1 = 0 + gx2 + γ1

= 0.0296 + 0.03

= 0.0596 = 5.96%

(42)

gα1 =
r1 − ρ
η
− (1− η)(1− λ1)

η
· γ1

=
0.06− 0.005

0.9
− (1− 0.9)(1− 0.5)

0.9
· 0.03

≈ 0.0594 = 5.94%

(43)

gσ1 = gα1 − gx2 − γ1
= 0.0594− 0.0296− 0.03

= −0.0002 = −0.02%

(44)

2.4.3 Comparison with a rule of thumb allocation

Take a rule of thumb allocation, where σ1 = σ2 = 0.5, and the movement
spends 1% of its capital per year, which then grows at 5% per year (i.e.,
gα1 = gα2 = gx1 = 0.05).

For Example 1. (η = 1.1) Let λ1 = λ2 = 0.5, and in general let all the
variables be as in the η = 1.1 example. Then for our rule of thumb allocation,
the growth rate for x2 is:

gx2 = γ2 + δ2 · (λ2 · gα2 + (1− λ2) · (gσ2 + gx2)) (45)

gx2 = 0.01 + 0.5 · (0.5 · 0.05 + 0.44 · (0 + gx2)) (46)

10



gx2 = 0.0288462 ≈ 0.0288 (47)

Then consider the growth of U in our rule of thumb allocation:

U(x, α) =
(αλ11 (σ1x2)

1−λ1)1−η

1− η
(48)

gU = (1− η) · (λ1 · gα1 + (1− λ1) · (gσ1 + gx2)) (49)

gU = (1− 1.1) · (0.5 · 0.05 + (1− 0.5) · (0 + 0.0288)) = −0.00394 (50)

In contrast the growth of U in our first example is equal to:

gU = (1−1.1)·(0.5·0.0594+(1−0.5)·(−0.00824+0.0296)) ≈ −0.004038 (51)

Note that when η > 1, the utility term is always negative, and thus a
faster decrease is preferable.

For Example 2. (η = 0.9) Using the same reasoning as before, for the
rule of thumb:

gx2 ≈ 0.0288 (52)

gU = (1− 0.9) · (0.5 · 0.05 + (1− 0.5) · (0 + 0.0288)) = 0.00394 (53)

In comparison, in the optimal path, the growth rate for U is:

gU = (1− 0.9) · (0.5 · 0.0594 + (1− 0.5) · (−0.0002 + 0.0296)) = 0.00444 (54)

Note that when η < 1, the utility term is positive, and so higher growth
in utility is preferable.
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3 Numerical simulations

3.1 Setup

We can run some simulations to ellucidate the short-run behaviour under the
model. Details of these simulations can be found in §C. More graphs can be
found in §D. To do this, we will consider the variable values in our second
example, (2.4.2), in addition to:

r2 = −0.05

w2 = 2000

β2 = 0.5

x1(t0) = 1010

x2(t0) = 105

(55)

The r2 value corresponds to a value drift (or death without replacement)
rate of 5% per year. The w2 value corresponds to a movement participant
donating $2000 per year, or 5% of a $40.000 salary. The β2 value corresponds
to a team of five people being able to convince 5 other people a year on a
20k budget (and mantaining those they have convinced previously.) The
initial values for x1 and x2 correspond to a $10 billion endowment and 100k
individuals broadly aligned with EA values. Further work could be done in
order to determine more accurate and realistic estimates.

3.2 State variables

In this regime, the state variables, after an initial period in which labor stays
roughly constant, these grow at an exponential rate:
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3.3 Spending rates

Spending also grows exponentially, as per results in (2.3.3). Note that, per
(2.4.2), α1 grows at a rate of 5.94%, whereas α2 grows at a rate of 5.96%,
so eventually, α2 will catch-up with and surpass α1. However, when it does
so, the difference will be small enough to not be immediately apparent in a
graph.
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3.4 Allocation of labor

With regards to the allocations of labor, we observe the following:

The starting point is a nearly 100% allocation of labor towards money-
making. This is caused by our model assuming that wages grow more slowly
than the return rate on capital.

For the purposes of illustration, consider a social movement made ex-
clusively of airline pilots, and suppose that their wages had been steadily
declining as their profession becomes commoditized. Then the optimal allo-
cation is for them to accumulate money at the beginning, and then transition
to direct work once their profession is paid less.1 This example is imperfect
because the tension is between pilots’ salaries relative to other salaries, but
in our graph the tension is between the donations of money-makers and the
interest rate, but the result is similar.

As time goes on, a different dynamic kicks in, and we observe:

1This example might also apply to “Effective Altruism”, which has a great proportion
of members with a background in software engineering, which currently has a reputation
for being a well-paying profession but might become more commoditized in the future.
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Recall the law of motion for x2:

ẋ2 = r2x2 + β2 · exp{γ2t} · (αλ22 · (σ2x2)1−λ2)δ2 (56)

Here, the best way to increase the absolute number of movement partici-
pants doing direct work turns out to be by investing into movement building.
For any given growth rate in the absolute number of direct workers, g, the
labor and capital inputs to movement-building term, (αλ22 · (σ2x2)1−λ2)δ2 has
to grow at at least that rate (and a little bit more to adjust for the drift rate,
r2). In principle this could be accounted solely by a very fast growth rate on
α2, but in actuality, as α2 grows, x2 · σ2 would become the limiting factor,
and σ2 ends up converging to a constant, and we obtain our Quasi-Ponzi
condition:

direct workers

direct workers + movement-builders
→ 0

We conclude this section with a close-up view of σ2:
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4 Conclusions and discussion

We have considered a stylized model of movement building in the context of
social movements which aim to effect some change in the world.

In §2.2 we derived a necessary but not sufficient heuristic which might be
used to check whether one is on the optimal path. Its simplest form is, per
(20):2

$ spent on direct work

% of people doing direct work
· % of people working on movement building

$ spent on movement building
= constant

In §2.3, we derived the balanced growth rates for the stylized model, and
in §2.3.3 we derived the spending path, that is, the optimal amount to spend
on movement building at any given time.

We also found that, for a space of plausible parameters, the optimal
allocation implies an asymptotic Ponzi condition, where, even as the number
of movement participants doing direct work grows with time in absolute
terms, they converge to 0% of the total movement size, with most of the
movement participants working either on earning money or in movement
building.

However, when carrying out numerical simulations, we find that this
asymptotic Ponzi condition is indeed asymptotic, and doesn’t instantiate
itself in the immediate future.

When carrying out these simulations, we find tend to find that the frac-
tion of movement participants who do direct work grows until it reaches a
peak, and then declines with time in favour of the fraction which dedicates
themselves to earning money. The exact magnitude and location of this peak
depends heavily on the choice of k1, a difficult to estimate constant, but the
overall dynamic of growing and then declining doesn’t. [See: appendix or
section to discuss this with examples. We can also try to explain this ana-
lytically].

The fraction of those who work on movement building seems to grow
slowly, until it stabilizes at around 0.5% of total movement size. Regard-
ing movement building, crucially, per (121) we found out that the amount
of money spent on movement building is, in a sense, stateless, that is, it
doesn’t depend on how many movement participants the social movement

2To apply this heuristic, find or estimate the four parameters at two distinct points in
time. Computing the ratios should result in the same constant at both points in time
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already has, but rather solely on their current recruitment costs, their ex-
pected contributions, and the rate of return of capital. We provided a graph-
ical illustration of these dynamics in §3, for a set of plausible parameters.

We also found that the problem under consideration displays a strong
proclivity to violate the transversality conditions, that is, to generate seem-
ingly impossible results. For example, if the amount of money and manpower
needed to convince someone to join a social movement is and remains much
lower than the amount of money and manpower which typical members are
willing to give to this movement, and if these typical members are willing
to allocate that money and manpower towards movement building, the opti-
mal solution looks like an almost instantaneous recursive loop which quickly
“takes over the world.” This is the motivation for the δ2 < 1 term in (3).

Another fun type of transversality violation are the Satan’s apple scenar-
ios, such as those in (Arntzenius et al. 2003) [3]. In these kinds of scenarios,
waiting n + 1 years might always be strictly better than waiting n years,
but waiting forever is strictly worse than waiting any finite amount. In our
case, this might correspond to a situation where investing for n + 1 years
before spending is better than investing for only n years, but where invest-
ing forever and never spending is worse than investing for any finite amount
of time. Similarly, it might be the case that directing all of a movement’s
resources and manpower towards movement building for n years to produce
explosive movement growth, and then switching over to generating utility is
only dominated by doing the same thing for m > n years, but that solely
concentrating on movement building forever would be suboptimal.

Now, for a range of plausible parameters this doesn’t happen, but there
is also no particular reason why one can’t fall in a Satan’s apple scenario.
Arntzenius et al. argue that the rational choice in such a scenario is to stick
to a large finite integer and to stop at that point.

Overall, the results above are contingent on the stylized movement build-
ing model capturing enough facets of reality to be of interest, but there
are many respects in which it is not exhaustive. To mention some salient
omissions, we don’t consider global catastrophic or existential risks (such
as runaway climate change, unaligned artificial intelligence, nuclear brinks-
manship, extremely deadly global pandemics, etc.), which might lead us to
consider more impatient allocations, and we also don’t here consider the in-
terplay between philanthropists who have different rates of time discounting.
Further, movement participants are assumed to be immortal. Should it then
the case that the stylized model is too far removed from reality, it may still
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serve as a building blocks for later and more detailed models which take into
account these and further considerations.

21



5 References

[1] Ramsey, F. P. (1928). “A Mathematical Theory of Saving”. The Eco-
nomic Journal Vol. 38, No. 152, pp. 543-559. Available at URL: http://
piketty.pse.ens.fr/files/Ramsey1928.pdf. (archived URL). Last accessed
September 22, 2020.

[2] Trammell, P. (2020). “Discounting for Patient Philanthropists”
(Early draft). URL: https://philipTrammelll.com/static/discounting for
patient philanthropists.pdf (archived URL). Last accessed September 22,
2020.

[3] Arntzenius, F., Elga, A., & Hawthorne, J. (2004). “Bayesianism, Infinite
Decisions, and Binding”. Mind, 113(450), new series, pp. 251-283. URL:
https://core.ac.uk/download/pdf/11920777.pdf (archived URL) Last ac-
cessed September 22, 2020.

[4] Kurlat, P. (2013). “Continuous Time Optimization, Part 1”. URL: https:
//sites.google.com/view/pkurlat/teaching (archived URL). Last accessed
September 22, 2020.

[5] Romer, P. (1986). “Cake Eating, Chattering, and Jumps: Existence
Results for Variational Problems”. Econometrica, 54(4), pp. 897-908.
URL: https://www.jstor.org/stable/1912842 (archived URL). Last ac-
cessed September 22, 2020.

[6] Jones, C.I.. “Life and Growth”. Journal of Political Economy, April
2016, Vol. 124 (2), pp. 539-578. URL: https://web.stanford.edu/∼chadj/
LifeandGrowthJPE2016.pdf (archived URL). Last accessed September
22, 2020.

[7] Aschenbrenner, L. (2020) ”Existential Risk and Growth” (Early
draft). URL: https://leopoldaschenbrenner.github.io/xriskandgrowth/
ExistentialRiskAndGrowth050.pdf (archived URL). Last accessed
September 22, 2020.

22

http://piketty.pse.ens.fr/files/Ramsey1928.pdf
http://piketty.pse.ens.fr/files/Ramsey1928.pdf
https://web.archive.org/web/20200802201053/http://piketty.pse.ens.fr/files/Ramsey1928.pdf
https://philipTrammelll.com/static/discounting_for_patient_philanthropists.pdf
https://philipTrammelll.com/static/discounting_for_patient_philanthropists.pdf
https://web.archive.org/web/20200812093752/https://philipTrammelll.com/static/discounting_for_patient_philanthropists.pdf
https://core.ac.uk/download/pdf/11920777.pdf
https://web.archive.org/web/20171110212213/https://core.ac.uk/download/pdf/11920777.pdf
https://sites.google.com/view/pkurlat/teaching
https://sites.google.com/view/pkurlat/teaching
https://web.archive.org/save/https://drive.google.com/file/d/1W7oS3sn2bRXvlgBaLkk2SCmq9Lf6wsUz/view
https://www.jstor.org/stable/1912842
https://web.archive.org/web/20200912122103/https://sci-hub.tw/https://www.jstor.org/stable/1912842
https://web.stanford.edu/~chadj/LifeandGrowthJPE2016.pdf
https://web.stanford.edu/~chadj/LifeandGrowthJPE2016.pdf
https://web.archive.org/web/20200314093935/https://web.stanford.edu/~chadj/LifeandGrowthJPE2016.pdf
https://leopoldaschenbrenner.github.io/xriskandgrowth/ExistentialRiskAndGrowth050.pdf
https://leopoldaschenbrenner.github.io/xriskandgrowth/ExistentialRiskAndGrowth050.pdf
https://web.archive.org/web/20200914154230/https://leopoldaschenbrenner.github.io/xriskandgrowth/ExistentialRiskAndGrowth050.pdf 


Appendices

A Why adding a xφ2
2 to the law of motion for

x2 produces the same qualitative behavior

in the limit

Equation (69) becomes:

ρµ2 − µ̇2 = µ2 · (ρ− gµ2) = (1− η) · (1− λ1) ·
U

x2
+ µ1 · w2 · exp{γ1t} · (1− σ1 − σ2)

+ µ2 · (1− λ2) · (δ2 + φ2) ·
F2

x2

(57)

which simplifies to

µ2 · (ρ− gµ2) = µ1 · w2 · exp{γ1t} ·
(

1 +
φ2

δ2
· σ2
)

(58)

But the
φ2

δ2
· σ2 is at most a constant factor, so the balanced growth

solution is the same.

B Proofs and derivations

B.1 Hamiltonian equations
∂H
∂α1

= 0

(1− η) · λ1 ·
U

α1

− µ1 = 0 (59)

µ1 = (1− η)λ1 ·
U

α1

(60)

∂H
∂α2

= 0

µ2 · δ2λ2 ·
F2

α2

− µ1 = 0 (61)
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µ1 = µ2 · δ2 · λ2 ·
F2

α2

(62)

∂H
∂σ1

= 0

(1− η)(1− λ1) ·
U

σ1
− µ1 · x2 · w2 · exp{γ1t} = 0 (63)

µ1 =
(1− η)(1− λ1)

w2

· U

σ1 · x2 · exp{γ1t}
(64)

∂H
∂σ2

= 0

− µ1 · x2 · w2 · exp{γ1t}+ µ2 · δ2(1− λ2) ·
F2

σ2
= 0 (65)

µ1 = µ2 ·
δ2 · (1− λ2)

w2

· F2

σ2 · x2 · exp{γ1t}
(66)

∂H
∂x1

= ρµ1 − µ̇1

µ1 · r1 = ρµ1 − µ̇1 (67)

µ1 = k1 · exp{(ρ− r1)t} (68)

∂H
∂x2

= ρµ2 − µ̇2

ρµ2 − µ̇2 = µ2 · (ρ− gµ2) = (1− η) · (1− λ1) ·
U

x2
+ µ1 · w2 · exp{γ1t} · (1− σ1 − σ2)

+ µ2 ·
(
r2 + (1− λ2) · δ2 ·

F2

x2

) (69)

Through several manipulations of (69), in particular by substituting (1−
η) · (1− λ1) · U from (64) and (1− λ1) · δ2 · F2 · µ2 from (66), we arrive at:

µ2 · (ρ− gµ2 − r2) = µ1 · w2 · exp{γ1t} (70)

This produces the growth equation
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gµ1 = gµ2 + gx2 − γ1 (71)

Summary

µ1 = (1− η)λ1 ·
U

α1

(72)

µ1 = µ2 · δ2 · λ2 ·
F2

α2

(73)

µ1 =
(1− η)(1− λ1)

w2

· U

σ1 · exp{γ1t}
(74)

µ1 = µ2 ·
δ2 · (1− λ2)

w2

· F2

σ2 · exp{γ1t}
(75)

µ1 = k1 · exp{(ρ− r1)t} (76)

µ2 · (ρ− gµ2 − r2) = µ1 · w2 · exp{γ1t} (77)

B.2 Balanced growth equations

This last equation, (83) comes from F2 = ẋ2 − r2x2. In the balanced growth
path, ẋ2 = gx2 · x2, so F2 = gx2 · x2 − r2x2 = (gx2 − x2) · x2.

gµ1 = gU − gα1 (78)

gµ1 = gµ2 + gF2 − gα2 (79)

gµ1 = gU − gσ1 − gx2 − γ1 (80)

gµ1 = gµ2 + gF2 − gσ2 − gx2 − γ1 (81)

gµ1 = (ρ− r1) (82)
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gµ1 = gµ2 − γ1 (83)

gx2 = gF2 = γ2 + δ2 ·
(
λ2 · gα2 + (1− λ2) · (gσ2 + gx2)

)
(84)

Some simple simplifications follow. (90) is derived from (81) + (83) +
(gx2 = gF2).

gα1 = gσ1 + gx2 + γ1 (85)

gµ1 = gU − gα1 (86)

gα2 = ��gσ2 + gx2 + γ1 (87)

gµ1 = gµ2 + gF2 − gα2 (88)

gµ1 = ρ− r1 (89)

gσ2 = 0 (90)

gx2 = gF2 = γ2 + δ2 ·
(
λ2 · gα2 + (1− λ2) · (gσ2 + gx2)

)
(91)

B.3 Balanced growth path derivation

From this we can simply derive gx2 , by substituting (87) and (90) in (91)

gx2 =
γ2 + δ2λ2γ1

1− δ2
(92)

And from that gα2 , by substituting (92) back in (87)

gα2 = gx2 + γ1 =
γ2 + δ2λ2γ1

1− δ2
+ γ1 (93)

Similarly, from (85), (86) and (92), we can derive gα1 and gσ1 :

gα1 =
r1 − ρ
η
− (1− η)(1− λ1)

η
· γ1 (94)
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gσ1 =
r − ρ
η
−
(

(1− η)(1− λ1)
η

+ 1

)
· γ1 − gx2 (95)

Note that this solution is only valid where gσ1 ≤ 0.
Note also that gα1 ≤ gα2 . Proof: gα1 = gσ1 + gx2 + γ1, and gα2 = ��gσ2 +

gx2 + γ1. Hence gα1 = gσ1 + gα2 ∧ gσ1 ≤ 0 =⇒ gα1 ≤ gα2 .
We can also derive x1.

ẋ1 = r1x1 − α1 − α2 + x2 · w2 · exp{γ1t} · (1− σ1 − σ2) (96)

x1 = a · exp{r1 · t}+ b · exp{gα1 · t}+ c · exp{gα2 · t} (97)

B.4 Checking the transversality condition

The variables we need follow. We get µ2 from (81) + (gF2 = gx2) + (gσ2 = 0)

µ1 = k1 · exp{(ρ− r1) · t} (98)

µ2 = k2 · exp
{(

(ρ− r1) + γ1

)
· t
}

(99)

x1 = a · exp{r1 · t}+ b · exp{gα1 · t}+ c · exp{gα2 · t} (100)

x2 = exp

{
γ2 + δ2λ2γ1

1− δ2
· t
}

(101)

The transversality condition is

lim
t→∞

exp{−ρ · t} · xi · µi = 0 (102)

For i = 1, this implies a = 0, gα1 < r1, gα2 < r1. For ρ ≈ 0.005, γ1 ≈
0.05, γ2 ≈ 0.01, r1 ≈ 0.06, λ1 ≈ 0.5, this implies η & 0.86.

For i = 3, the transversality condition is satisfied when:

− ρ+ (ρ− r1 + γ1) +
γ2 + δ2 · λ2 · γ1

1− δ2
< 0 (103)

i.e.,
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γ1 +
γ2 + δ2 · λ2 · γ1

1− δ2
< r1 (104)

or, alternatively,

gα2 = gx1 + γ1 < r1 (105)

For λ2 ≈ 0.5, r1 ≈ 0.06, γ1 ≈ 0.03, γ2 ≈ 0.01, this implies that either
δ2 . 0.44 or 1 < δ2. For γ1 ≈ 0.02, this changes to −1 < δ2 . 0.6 or 1 < δ2.

Further, (70) implies ρ−gx2−r2 > 0, i.e., r2 +γ1 < r1; otherwise the first
term in the equality in (70) would be negative and the second one positive.
We will see in (121) that r2, the movement drift rate, increases the initial
value of α2, but not its growth rate. Still, r2 + γ1 < r1 allows only for a
pretty low drift rate.

B.5 Exact spending schedules

In this section, through the previous equations, we derive a more or less
explicit formula for α1 and α2. Using that, determine the form of σ1 and σ2,
and having these, we derive the instantaneous change in x1 and x2, and this
is already enough for numerical simulations.

To derive α1, we will make use of the following equations: (72), (76) and
(9)

µ1 = (1− η)λ1 ·
U

α1

(106)

µ1 = k1 · exp{(ρ− r1)t} (107)

λ1
α1

=
1− λ1

σ1 · x2 · w2 · exp{γ1t}
(108)

Expanding the full form of U per (2) on (106):

µ1 = λ1 ·
(αλ11 (σ1x2)

1−λ1)1−η

α1

(109)

and replacing σ1 · x2 on (108) from (107):
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µ1 = λ1 ·

(
αλ11 ·

(
1− λ1
λ1

· α1

w2 · exp{γ1t}

)1−λ1
)1−η

α1

(110)

µ1 = λ1 ·
α
(1−η)
1

α1

·
(

1− λ1
λ1 · w2 · exp{γ1t}

)(1−λ1)(1−η)

(111)

αη1 =
λ1
µ1

·
(

1− λ1
λ1 · w2 · exp{γ1t}

)(1−λ1)(1−η)

(112)

αη1 =
λ1

k1 · exp{(ρ− r1)t}
·
(

1− λ1
λ1 · w2 · exp{γ1t}

)(1−λ1)(1−η)

(113)

Note how this is consistent with (94):

gα1 =
r1 − ρ
η
− (1− η)(1− λ1)

η
· γ1 (114)

Now, if k1 is too small, then α1 becomes so large that x1 → −∞. Con-
versely, if k1 is too large, then α1 is too small and we accumulate money we
are never to spend. k1 will be then uniquely determined by being the value
such that neither of those conditions hold.

We can derive α2 in a similar manner, starting from (73), (10) and (77)

µ1 = µ2 · δ2 · λ2 ·
F2

α2

(115)

λ2
α2

=
1− λ2

σ2 · x2 · w2 · exp{γ1t}
(116)

µ2 · (ρ− gµ2 − r2) = µ1 · w2 · exp{γ1t} (117)

We expand F2 on (115) per (3) and divide by µ2:

µ1

µ2

= δ2 · λ2 ·
β2 · exp{γ2t} · (αλ22 · (σ2x2)1−λ2)δ2

α2

(118)

We simplify µ1/µ2 per (117), replace σ1x2 per (116), and substitute gµ2 =
ρ− r1 + γ1
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ρ− gµ2 − r2
w2 · exp{γ1 · t}

= δ2·λ2·β2·exp{γ2t}·

(
αλ22 ·

(
1− λ2
λ2

· α2

w2 · exp{γ1t}

)1−λ2
)δ2

α2

(119)

ρ− (ρ− r1 + γ1)− r2
w2 · exp{γ1 · t}

= δ2·λ2·β2·exp{γ2t}·
αδ22
α2

·
(

1− λ2
λ2 · w2 · exp{γ1t}

·
)δ2·(1−λ2)

(120)

α1−δ2
2 =

w2 · exp{γ1 · t}
r1 − γ1 − r2

· δ2 · λ2 · β2 · exp{γ2t} ·
(

1− λ2
λ2 · w2 · exp{γ1t}

·
)δ2·(1−λ2)

(121)

C Numerical simulation details

We have determined the value of αi at all times (up to a constant k1), as
well as α2. Now suppose we knew x1 and x2 at some point, for example at
the present time t0, i.e., x1(t0), x2(t0). Then, we could also figure out σi(t0),
per (9) and (10):

σi(t0) =
1− λi
λi

· αi(t0)

x2(t0) · w2 · exp{γ1t0}
(122)

Using α1(t0), α2(t0), σ1(t0), σ2(t0), x1(t0), x2(t0) we can approximate the
derivative, or instantaneous change of the state variables, ẋ1(t0), ẋ2(t0) per
their law of motion (3), and then approximate xi(t0 ± ε) = xi(t0)± ε · ẋi(t0).
Our general approach to generate numerical approximations will be to use
this approximation.

The method in which we start with the values at some initial point in
time and then extrapolate them into the future is known as forward shooting.
In contrast, the method in which we try to guess some final points in the
future which, when extrapolated into the past hit our initial conditions is
known as reverse shooting. Reverse shooting is known for being more stable,
but in practice we don’t notice much of a difference.
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The code, in R, is based on previous Matlab code by Leopold Aschenbren-
ner, whose code is itself based on code by Charles Jones. Aschenbrenner’s
code can be found in this online repository

This code makes use of the variable values from our second example
scenario in (2.4.2)

η = 0.9

ρ = 0.005

r1 = 0.06

γ1 = 0.03

γ2 = 0.01

λ1 = 0.5

λ2 = 0.5

δ2 = 0.44

(123)

To which we add r2, which is negative because it represents a value-drift
or drop-out rate (as opposed to, say, a fertility rate).

r2 = −0.05 (124)

and β2, w2.

w2 = 2000

β2 = 0.5
(125)

These factors correspond to each movement participant donating $2000
per year, or 5% of a $40.000 salary, and a team of five people being able
to convince 5 other people a year on a 20k budget (and mantaining those
they have convinced previously.) Further work could be done in order to
determine more accurate and realistic estimates. We also consider initial
conditions:

x1(t0) = x_1_init = 1010 (126)

x2(t0) = x_2_init = 105 (127)
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We also consider two parameters, corresponding to our unknown con-
stant k1: k1_forward_shooting and k1_reverse_shooting. They deter-
mine spending on direct work. Their value is such that decreasing it results
in too little spending, and the movement accumulates money which is never
spent. Conversely, increasing it results in the movement going bankrupt and
acquiring infinite debt. However, its value is inexact, and will be a source
of error. In particular, if we run simulations until time t, we don’t know
that the movement will not go bankrupt at some subsequent time, and hence
k1 requires some guesswork. More specifically, if we select the maximum k1
such that x1 is positive at time t, we tend to find that x1 → −∞ shortly
afterwards.

k1_forward_shooting = 3*10^(-7)

k1_reverse_shooting = 3*10^(-7)

Finally, we decide on a step-size and on a time interval. The time interval
will start at 100 years, and increase to 1,000 and then 10,000 years.

stepsize = 0.1

first = 0

last = 100

times_forward_shooting = seq(from=first, to=last, by=stepsize)

times_reverse_shooting = seq(from=last, to=first, by=-stepsize)

D Additional graphs

D.1 Graphical results: 100 years

For the first hundred years, accumulated money and movement size grow
at different exponential rates. The allocation of participants is primarily
to money-making, though both the allocations of movement participants to
direct work and to movement building initially increase exponentially, with
the former doing so at a much higher rate. Spending also increases in absolute
terms for both direct work and movement building (per (2.3.3)).
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D.2 Graphical results: 1,000 years

The dynamic for the state and spending variables is mostly as in the previous
section. With regards to movement size and distribution, movement building
as a fraction of movement size plateaus at around 0.65%, and stays there.
Direct work reaches 40%, and starts slowly declining, whereas money-making
starts increasing back-up once again.
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D.3 Graphical results: 10,000 years

Direct work as a fraction of movement size continues to decrease, perhaps
exponentially, but doesn’t yet go below movement building. However, we
know from the balanced growth rates that it will do so. We can’t display
some of the graphs on a non-logarithmic scale due to large number limitations
in R. [and I’m having some limitations in pushing forward the simulation
much beyond 10k years]
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